BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-] To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 8 November 2024
Case Number: T 2076/22 - 3.5.07
Application Number: 19175959.6
Publication Number: 3572952
IPC: GO6Fl6/24
Language of the proceedings: EN

Title of invention:
UNIFIED OPTIMIZATION OF ITERATIVE ANALYTICAL QUERY PROCESSING

Applicant:
SAP SE

Headword:
Unified optimisation/SAP SE

Relevant legal provisions:

EPC Art. 83

RPBA 2020 Art. 12(2), 12(4), 12(6), 13(2)
EPC R. 116(2), 137(3)

Keyword:

Sufficiency of disclosure - main request, first, second,
fourth and fifth auxiliary requests (no)

Admissibility - third auxiliary request (no)
Admissibility - fifth auxiliary request (yes)

This datasheet is not part of the Decisior

EPA Form 3030 It can be changed at any time and without notice

Decisions cited:
G 0001/03, G 0001/19, T 0068/85, T 0922/17, T 2773/18

This datasheet is not part of the Decisior

EPA Form 3030 It can be changed at any time and without notice

9

Eurcpiisches
Fatentamt

Eurcpean
Patent Office

Qffice eureplen
des brevets

Case Number:

Appellant:
(Applicant

of Technical Board of Appeal 3.5.07

)

Representative:

Decision under appeal:

Composition of the Board:

Chair
Members:

Beschwerdekammern
Boards of Appeal

Chambres de recours

T 2076/22 - 3.5.07

DECISION

of 8 November 2024

SAP SE
Dietmar-Hopp-Allee 16
69190 Walldorf (DE)

Miller-Boré & Partner

Boards of Appeal of the
European Patent Office
Richard-Reitzner-Allee 8
85540 Haar
GERMANY

Tel. +49 (0)89 2399-0

Patentanwalte PartG mbB
Friedenheimer Briicke 21
80639 Minchen (DE)

Decision of the Examining Division of the
European Patent Office posted on 26 April 2022
refusing European patent application

No. 19175959.6 pursuant to Article 97(2) EPC

J. Geschwind
C. Barel-Faucheux
M. Jaedicke

-1 - T 2076/22

Summary of Facts and Submissions

IT.

IIT.

The appellant (applicant) appealed against the
examining division's decision refusing European patent
application No. 19175959.6, published as European
application EP 3572952 Al.

The examining division decided that the subject-matter
of the independent claims of the main request did not
meet the requirements of Article 83 EPC. The same
objection applied to claim 1 of the first to third
auxiliary requests. The examining division decided not
to admit the fourth auxiliary request into the
proceedings, since this request was filed late, during
the oral proceedings before the examining division, and
did not, prima facie, overcome the objections under
Article 83 EPC (Rule 137(3) EPC).

The examining division cited inter alia the following

documents in the decision:

D2 US 6 026 240 A, published on 15 February 2000

D4 Kisung Park et al., "Iterative Query Processing
based on Unified Optimization Techniques",
SIGMOD '19, pp. 54 to 68, 5 July 2019

With the statement of grounds of appeal, the appellant
requested that the decision under appeal be set aside
and that the application be granted on the basis of one
of the main request, the first to second and fourth
auxiliary requests, all requests being the subject of

the decision and resubmitted with the statement of

-2 - T 2076/22

grounds of appeal, or an amended third auxiliary

request filed with the statement of grounds of appeal.

In a communication annexed to the summons to oral
proceedings, the board informed the appellant that it
was of the preliminary opinion that the application did
not meet the requirements of Article 83 EPC since it
did not disclose the invention as defined in claim 1 of
all the requests in a manner sufficiently clear and
complete for it to be carried out by a person skilled
in the art. The board also stated that the examining
division's decision not to admit the fourth auxiliary
request suffered from an error in the use of discretion
and the board considered the fourth auxiliary request
to be admissible, while it was inclined not to admit
the (amended) third auxiliary request into the appeal
proceedings. The board was of the preliminary opinion
that claim 1 of all the requests did not meet the

requirements of Article 84 EPC.

In a letter dated 13 September 2024, the appellant
filed a fifth auxiliary request and provided arguments.
It also filed an excerpt from the following book:
Abhijit "Set Theory With an Introduction to Real
Dasgupta Point Sets", Birkhauser, 2014, front page,
bibliographic page and pages 2 and 3

In a phone consultation following a call by the
appellant to the board's registry, the board informed
the representative that it was preliminarily not
convinced by the appellant's arguments regarding the
objections under Article 83 EPC for all the requests,
that the third auxiliary request appeared not to be
admissible, and that the fifth auxiliary request would
be admitted but did not appear to overcome the

Article 83 EPC objections.

VII.

VIIT.

IX.

- 3 - T 2076/22

Oral proceedings were held as scheduled and the
appellant was heard on relevant issues. At the end of

the oral proceedings, the Chair announced the decision.

The appellant's final requests were that the decision
under appeal be set aside and that a patent be granted
on the basis of the set of claims of the main request
or of any of the first to fourth auxiliary requests,
all requests as resubmitted or filed with the statement
of grounds of appeal, or the fifth auxiliary request
filed by letter of 13 September 2024.

Claim 1 of the main request reads as follows

(itemisation by the board):

A A computer-implemented method comprising:

B receiving an intermediate representation (120,
310, 510, 1010, 1310) of an input procedure (110)
comprising a plurality of statements (815, 835,
915, 1715, 1735),

C wherein the plurality of statements (815, 835,
915, 1715, 1735) comprises a plurality of query
statements, and a plurality of imperative

statements comprising a loop;

D enumerating a plurality of query execution plan
candidates (145, 330, 590) for the input procedure
(110) via the intermediate representation (120,
310, 510, 1010, 1310) of the input procedure
(110),

E wherein the enumerating comprises performing at

least one sink operation on a query statement,

- 4 - T 2076/22

wherein the at least one sink operation moves the
query statement inside a loop boundary while
preserving program correctness,

and

wherein the enumerating comprises considering a
plurality of query statements as sink operation

candidates for a loop;

based on a data dependency graph (530, 1030, 1330)
representing at least one data dependency
relationship for the plurality of statements (815,
835, 915, 1715, 1735), excluding at least one of

the sink operation candidates from consideration;

performing query inlining that combines at least
two query statements while preserving program

correctness,

wherein performing query inlining comprises
performing query inlining on at least one sinked

query statement;

estimating computing execution resource demands
(370) for respective of the plurality of query
execution plan candidates (145, 330, 590); and

determining an optimal query execution plan (175,

390) for the input procedure (110),

wherein the determining comprises finding a
candidate query execution plan having a lowest
estimated computing execution resource demand
(370) ;

XT.

XIT.

- 5 - T 2076/22

N compiling and executing the input procedure (110)
according to the optimal execution plan (175,
390) .

Claim 1 of the first auxiliary request differs from
claim 1 of the main request in that the following

feature has been added between features H and I:

H1 generating a plurality of alternative query
execution plan candidates (145, 330, 590),
wherein the generating comprises performing
various different permutations of sink operations
on the initial query execution plan candidate
(145, 330, 590) for different of the plurality of
alternative query execution plan candidates (145,
330, 590);

Claim 1 of the second auxiliary request differs from
claim 1 of the first auxiliary request in that the
following feature has been added between features H1
and I:

H2 building a sink subgraph (1390, 2000) for the
loop from a data dependency graph (530, 1030,
1330) representing at least one data dependency
relationship for the plurality of statements
(815, 835, 915, 1715, 1735), wherein the sink
subgraph (1390, 2000) represents sink
dependencies between a plurality of statements in

the loop;

Claim 1 of the third auxiliary request differs from
claim 1 of the second auxiliary request by the addition

of the following two features:

XITIT.

XIV.

- 6 - T 2076/22

H3 moving a query statement in the intermediate
representation (120, 310, 510, 1010, 1310) into a
different loop; (between feature H2 and feature I)

H4 , whereby the optimal query execution plan (175,
390) integrates query motion across iterative
constructs (between features M and N but before

the ";" character at the end of feature M)

Claim 1 of the fourth auxiliary request differs from
claim 1 of the main request in that the text ", where
possible while preserving program correctness" has been
added at the end of feature J (before the ";"

character) .

Claim 1 of the fifth auxiliary request reads as follows
(itemisation by the board, parts in italic were added

with respect to claim 1 of the main request):

A A computer-implemented method comprising:

B' receiving an intermediate representation (120,
310, 510, 1010, 1310) of an input procedure (110),
the input procedure (110) comprising a plurality
of statements (815, 835, 915, 1715, 1735),

C' wherein the plurality of statements (815, 835,
915, 1715, 1735) comprises a plurality of SQL
query statements, and a plurality of imperative
statements comprising a loop, and the intermediate
representation (120, 310, 510, 1010, 1310)
being a directed graph comprising nodes for basic
blocks of the input procedure and comprising edges

between the nodes representing control flow;

-7 - T 2076/22

enumerating a plurality of query execution plan
candidates (145, 330, 590) for the input procedure
(110) via the intermediate representation (120,
310, 510, 1010, 1310) of the input procedure
(110),

wherein a query execution plan contains both
operations directed to accomplishing processing
for the plurality of SQL query statements and
operations directed to accomplishing processing

the plurality of imperative statements,

wherein the enumerating comprises performing at
least one sink operation on an SQL query

statement,

wherein the at least one sink operation moves the
SQOL query statement inside a loop boundary while
preserving program correctness, wherein the
program correctness 1s preserved when there is a
statement inside the loop boundary that has
dependency on the SQL query statement and when
there are no statements outside the loop boundary
that affect the results of the SQL query statement
if it is moved inside the loop boundary,

and

wherein the enumerating comprises considering a
plurality of SQL query statements as sink

operation candidates for a loop;

Jl

- 8 - T 2076/22

based only on flow dependencies of a data
dependency graph (530, 1030, 1330) representing at
least one data dependency relationship for the
plurality of statements (815, 835, 915, 1715,
1735), excluding at least one of the sink
operation candidates from consideration, wherein a

flow dependency 1is a read-after-write dependency;

performing query inlining that combines at least
two SQL query statements having a flow dependency

while preserving program correctness,

wherein performing gquery inlining comprises
performing query inlining on at least one sinked
SQOL query statement, where possible while
preserving program correctness, wherein the
program correctness 1s preserved when the
statement inside the loop boundary that has
dependency on the at least one sinked SQL query
statement is the only one depending on the at

least one sinked SQL query statement;

estimating computing execution resource demands
(370) for respective of the plurality of query
execution plan candidates (145, 330, 590); and

determining an optimal query execution plan (175,

390) for the input procedure (110),

wherein the determining comprises finding a
candidate query execution plan having a lowest
estimated computing execution resource demand
(370) ;

-9 - T 2076/22

N compiling and executing the input procedure (110)
according to the optimal execution plan (175,
390) .

Reasons for the Decision

Application

Claim 1

The application relates to database processing, and
more particularly to optimising procedures with query
statements in iterative scenarios (paragraph [0001] of

the application as filed).

of main request and Article 83 EPC

Insufficient disclosure of the main request

The claimed method is about optimising an input
procedure comprising query statements and statements of
an imperative programming language comprising a loop.
The optimisation attempted by the method of claim 1 is
to generate alternative execution plans by moving a
query statement inside a loop in the input procedure,
i.e. by performing a so-called "sink" operation. If an
execution plan based on the sunk (SQL) statement has a
lower estimated computing execution resource demand
than other execution plans, this plan can be selected
as the best plan by the method and therefore the query
execution could potentially be optimised (provided that
the cost estimates are sufficiently accurate).
Evidently, moving an (SQL) statement inside a loop has
to preserve program correctness, since otherwise the

input procedure is not optimised but produces erroneous

- 10 - T 2076/22

results. As discussed in the following and as argued by
the appellant, the claimed method relies on a data
dependency graph to determine whether an (SQL)
statement can be moved into a loop while preserving

program correctness.

Paragraphs [0128], [0129] and [0131] of the description
disclose (emphasis added by the board): "At 1430, each

SELECT statement S in the loop 1is checked, to identify

whether there is a statement T that is outside the loop
that S uses, either directly or indirectly. At 1440, it
is determined for statement T identified in 1430

whether there are any interfering statements, and if

not, then T is added to the set of sinkable statements
S’.[..] In some cases, identifying a statement T outside
the loop boundary that is used by at least one SELECT

statement inside the loop boundary for which there are

no interfering statements comprises determining that

moving the statement T inside the loop boundary will

not affect the operation of the statement, such as by

changing its output as a result of the existence of one

or more interfering statements (e.g., statements on

which T also has dependence)".

Therefore the description discloses that a criterion
used to move the statement T inside the loop boundary,
i.e. to sink it, is that there are no statements on
which T has dependence or, in other words, no
"interfering statements™. In its letter of reply, the
appellant referred to paragraph [0185] of the
application as originally filed: "Data dependency

refers to how the execution of a statement affects the

execution result of another statement".

Moreover, the board notes that paragraph [0122]

(together with Figure 12) enumerates two conditions for

- 11 - T 2076/22

a statement to be a "sinkable statement", i.e. a

statement which can be sunk, "[i]n general", "without

breaking program correctness":
- there is a statement inside the loop that has
dependence on the statement outside the loop, and

- there are no "interfering statements" (i.e., other

statements outside the loop that might affect the

results of the statement outside the loop if it is

moved before the consuming statement inside the loop).

Figure 13 illustrates an example system 1300 of
identifying whether a given statement or set of
statements is sinkable. A sink identifier 1350 can take

as input a data dependency graph 1330 (DDG) and can use

data dependencies to identify one or more sinkable
statements. The sink identifier may enumerate and
return as output one or more sink subgraphs 1390A-N
reflecting different potential combinations of sinkable
statements that may be sunk within the loop (paragraphs
[0124] and [0126]).

In its communication, the board was of the preliminary
opinion that the skilled person did not find sufficient
information in the application as filed to determine

all relevant data dependencies for arbitrary imperative

code and arbitrary query statements.

For example, when one query updates a table that is
read by another query, the set of data records updated
and the set of data records read may or may not be non-
overlapping, depending possibly on the run-time wvalues
of variables that are manipulated using imperative

statements.

Difficulties in determining data dependencies could

also arise for so-called "active" databases, where an

- 12 - T 2076/22

SQL statement can trigger database updates in addition
to those specified by the SQL statement itself by means

of triggers, for example.

In its letter of reply to the board's communication,
the appellant argued that a person skilled in the field
of computer science, in particular in programming and
query optimisation, had sufficient knowledge to
determine how the execution of an arbitrary statement
affected the execution result of another arbitrary
statement, i.e. whether there were data dependencies
between two statements. Exemplarily, this could be
achieved by analysing the code of the input procedure
and/or by compiling and executing the code under
different, controlled conditions to infer the

dependencies.

In its letter of reply to the board's communication,
the appellant also argued that the claimed plurality of
statements, comprising both query statements and
imperative statements, was part of an input procedure,
which comprised a specific sequence of statements. It
was therefore possible to establish whether reading was
performed before or after updating the table, which
determined the direction of the dependency between the
reading statement and the updating statement. This was
also discussed in paragraph [0203] of the application.
Furthermore, even considering hypothetical cases in
which it might not be possible to univocally determine
dependencies before run-time, the DDG would simply
contain all potential edges, in order to conservatively
assess dependencies and thus avoid the risk of

violating program correctness.

The board is not convinced by the appellant's arguments

for the following reasons. It is not possible for the

- 13 - T 2076/22

skilled person to determine, over the whole scope of
the claim and without undue burden, how the execution
of an arbitrarily chosen SQL statement affects the

execution result of another SQL statement.

For example, consider the following two SQL statements
on a table named "parts":

1) UPDATE parts p SET p.price = p.price + 10 WHERE
p.part category = 'cars'

2) SELECT * FROM parts p WHERE p.part key =

input variable

The first SQL statement updates the price for parts in
the category cars, and the second selects the data for
a part with a key value that is obtained from an input
variable. Evidently, to determine whether the two
statements have a data dependency it is necessary to
know (1) the value of the input variable (which will in
general only be known at run-time, not at compile-time)
and (2) whether in the database there exists a part
with a key having the value of the input variable which
is in the category 'cars'. Since the contents of the
database change over time, it is not possible to know
whether or not condition (2) is true before run-time,
even 1f one were to rely on testing. Even worse, the
input variable could be further processed by imperative
statements, for example. This would give rise to

further difficulties in determining data dependencies.

Since it is in general necessary to take the actual
database content at run-time into account, the
appellant's argument that the skilled person could
somehow determine the DDG manually by testing is not
convincing either. Manual testing at run-time was not
disclosed in any of the passages cited by the

appellant, nor is the method of claim 1 limited to

.10

- 14 - T 2076/22

query optimisation at run-time of the query or to the
use of a manually-determined DDG. The cited paragraph
[0203] also relies on the DDG ("If the statements sj
and s, are the select statements, a path exists between
the two nodes corresponding to s; and sy, in the data

dependency graph.") .

Regarding the appellant's argument that it was possible
to use a "conservative model" of dependencies, the
board observes that claim 1 is not limited to any
"conservatively" defined DDG. Consequently, this
argument fails to overcome the Article 83 EPC

objection.

During the oral proceedings, the appellant argued that
the data dependency graph was not part of the method

(see feature H: "based on a data dependency graph [...]
representing at least one data dependency relationship

for the plurality of statements [...]").

The appellant stated that it could be that it was not
trivial to determine "all kinds of data dependencies
for arbitrary imperative code and arbitrary query
statements". Even if, for very specific cases, it might
be difficult, that did not completely prevent the
skilled person from determining the data dependencies.
But this was a question relating to the generation of a
DDG, which generation was not part of the claim. In the
reply to the board's communication, the appellant had
cited the following Wikipedia page, https://
en.wikipedia.org/w/index.php?

title=Dependency graph&oldid=836892639, which is a
version of the Wikipedia page published before the
priority date of the application.

The concept of a DDG was well known to the skilled

.11

- 15 - T 2076/22

person. The appellant referred as evidence to document
D2, column 2, lines 38 to 45, which reads:

"For loops, the intermediate code representation
generally includes data structures that either
represent, or can be used to create, data dependency
graphs (DDGs). DDGs embody the information required for
an optimizer to determine which statements are
dependent on other statements. The nodes in the graph
represent statements in the loop and arcs represent the

data dependencies between nodes".

The appellant also cited column 5, line 66 to column 6,
line 11, of document D2, which reads: "A Data
Dependency Graph (DDG) is a data structure in the
computer memory that represents how statements within a
loop depend on other statements. These graphs include
nodes that represent computer operations and arcs that
represent dependencies between the nodes. These
dependencies include flow dependencies, data
dependencies and anti-dependencies. Data structures
within the compiler that represent data dependency
graphs are used to determine loop-invariant and omega-
invariant statements within a loop. These data
structures are often represented by diagrams using
circles for nodes corresponding to statements and arcs
between the nodes representing dependencies. FIG. 4

illustrates an example DDG and 1is described below.".

According to the appellant, the invention was built "on
top of" a well-known DDG: using the DDG, it determined
which statements were dependent on other statements.
For example, the DDG could be 99% accurate. If there
were some difficulties in determining the dependencies,
this information could be provided in the DDG. The
improvement relied on the optimiser itself. The DDG had

to be correct and complete for the program to be

.12

.13

.14

- 16 - T 2076/22

correct. Every optimiser had to apply the same trust in
the correctness of the DDG. The DDG was a different

representation of the "intermediate representation”.

The board notes that paragraph [0085] of the
application as originally filed states that the query

execution plan enumerator 520 can generate a data

dependency graph 530 representing dependencies between

the plurality of statements. In this case, the
"enumerating" step of feature D would (implicitly)
comprise the generation of the DDG. Moreover, step 620

of Figure 6 of the application is a step of generating

a data dependency graph (see also paragraphs [091],

[0146] and [0236] of the description as originally
filed). Moreover, paragraph [0163] reads: "In order to
find all sink subgraphs for a given IR, one can find
all the loop body blocks by using in-order traversal
and build a data dependency graph".

Moreover, the claim wording does not exclude the DDG
being generated by the method of claim 1. For example,
claim 1 does not state that the DDG is received as a
(manually generated) input. Rather, claim 1 also
encompasses methods generating the DDG (see feature A:

"method comprising" certain steps, not a method of

consisting only of features B to N).

The board does not contest that the concept of a DDG
was well known. The objection raised by the board was
rather how this DDG can be practically obtained for an
input procedure according to claim 1. In this regard,
none of the cited passages of document D2 disclose a
solution for determining a DDG in the context defined

by claim 1.

.15

.16

.17

- 17 - T 2076/22

During the oral proceedings, the appellant cited
decision T 2773/18, reasons 3.2, which reads: "[...]
Whether claims, description and figures provide the
skilled person with sufficient information to carry out
an invention, 1is a purely technical question, that 1is
separate from that of what reasonably falls within the
ambit of claim wording. In the Board's view if the
skilled person upon consideration of the entire
disclosure possibly using common general knowledge can
infer what will and what will not work, a claimed
invention is sufficiently disclosed, even if a broad
construction might also encompass what doesn't work

[o..]M.

According to the present claim 1, the sink operation is
performed "while preserving program correctness" (see
feature F). However, the board is not convinced that
the program correctness is preserved when sinking SQL
statements in all cases or for an incomplete or
incorrect DDG. Nor did the appellant explain where the
application as filed provides sufficient information to
the skilled person on what will and what will not work
or on what common general knowledge the skilled person

could rely for this purpose.

In its letter of reply to the board's communication,
the appellant argued that the feature "while preserving
program correctness" was a functional feature and that,
according to decision T 68/85 (see headnote),
functional features were allowed if such features could
not otherwise be defined more precisely without
restricting the scope of the invention, and if these
features provided instructions which were sufficiently
clear for the expert to reduce them to practice without

undue burden, if necessary with reasonable experiments.

.18

.19

.20

- 18 - T 2076/22

The appellant argued that the feature limited the way
the sink operation or query inlining could be performed
in a manner that could be easily verified by the
skilled person without undue burden, namely by running
the program before and after the sink operation (or
query inlining) and checking whether (1) the program
could be run at all after the modification and (2) the

results of the runs were the same.

The board is however of the opinion that neither the
claim nor the application as originally filed enable
the skilled person, without undue burden, to preserve
program correctness when sinking a statement. Even if
the skilled person were to run the program before and
after each sink operation, this would constitute an
"undue" burden in particular in view of the potentially
very large number of combinations of possible sink
operations. Furthermore, testing would not solve the
problem of preserving program correctness since, at
least in the circumstances of the case at hand, testing
can only demonstrate the presence of an error resulting
from a sink operation, but not verify that a sink
operation preserves program correctness. For example,
the results of testing depend on the database content

at run-time (see above, point 2.7).

During the oral proceedings, the board pointed out that
the inventor's post-published paper D4, section 2.3,

second paragraph on page 57, reads: "We assume that all
statements have no hidden side-effects. In other words,
all data dependencies through Read and Write performed

by a statement are captured in the DDG.".

Therefore the inventors at least indirectly

acknowledged that it was difficult for a DDG to be

- 19 - T 2076/22

completely accurate under all circumstances.

In this context, the board also refers to decision

G 1/03, Reasons 2.5.2, according to which the inclusion
of non-working embodiments in claimed subject-matter is
of no harm if there are a large number of conceivable
alternatives and the specification contains sufficient
information on the relevant criteria for finding
appropriate alternatives over the claimed range with
reasonable effort. However, if this is not the case and
there is lack of reproducibility of the claimed
invention and an effect is expressed in a claim, there

is lack of sufficient disclosure.

In the present case, the claim expresses the effect of
preserving program correctness and, in the board's
view, it is not possible to find working embodiments,
with reasonable effort, over substantial parts of the
claimed range. This issue is even more important in
view of point 84 of decision G 1/19, which states that
a prerequisite for meeting the requirement that the
claimed invention be inventive over the whole scope of
the claim is that it also be technical over the whole
scope. This implies that a computer-implemented
invention specifying an effect that is a precondition
for a credible technical effect also has to be
sufficiently disclosed over the whole scope of the
claim. The reason is that if there are non-working
embodiments in a claimed subrange, then there can also
be no technical effect linked to the claimed effect in

that claimed subrange.

Therefore the application as filed does not disclose
the invention as defined in claim 1 of the main request

in a manner sufficiently clear and complete for it to

Claim 1

Claim 1

Claim 1

- 20 - T 2076/22

be carried out by a person skilled in the art (Article
83 EPC).

of first auxiliary request and Article 83 EPC

Claim 1 of the first auxiliary request differs from
claim 1 of the main request in that feature H1l (see
point X. above) has been added between features H and
1.

This amendment constitutes a further limitation of
claim 1 of the main request, but is not related to the
DDG. Therefore it does not overcome the above objection

under Article 83 EPC against the main request.

of second auxiliary request and Article 83 EPC

Claim 1 of the second auxiliary request differs from
claim 1 of the first auxiliary request in that feature
H2 (see point XI. above) has been added between

features H1 and I.

Since, in claim 1 of the second auxiliary request, a
sink subgraph is built from the DDG, and since the
board came to the conclusion that the crucial point was
that the application does not enable the skilled person
to generate the DDG over substantially the whole scope
of the claim, the second auxiliary request cannot
overcome the board's objection under Article 83 EPC

against the main request.
of third auxiliary request - admissibility
Claim 1 of the third auxiliary request has been amended

with respect to claim 1 of the previous third auxiliary

request (considered in the decision under appeal) in

- 21 - T 2076/22

that the text "or moving a query statement in the
intermediate representation (120, 310, 510, 1010, 1310)
into a loop already having another query statement”
after feature H3 has been deleted.

In the statement of grounds, the appellant stated that
one alternative had been removed from the independent

claim(s) .

Article 12(4) RPBA stipulates that any part of a
party's appeal case which does not meet the
requirements in Article 12(2) RPBA is to be regarded as
an amendment, unless the party demonstrates that this
part was admissibly raised and maintained in the
proceedings leading to the decision under appeal. Any
such amendment may be admitted only at the discretion
of the board.

The party shall clearly identify each amendment and
provide reasons for submitting it in the appeal
proceedings. In the case of an amendment to a patent
application or patent, the party shall also indicate
the basis for the amendment in the application as filed
and provide reasons why the amendment overcomes the

objections raised.

The board shall exercise its discretion in view of,
inter alia, the complexity of the amendment, the
suitability of the amendment to address the issues
which led to the decision under appeal, and the need

for procedural economy.

The appellant neither provided reasons for submitting
the amendment to the third auxiliary request, or the

(amended) third auxiliary request, in the appeal

- 22 - T 2076/22

proceedings, nor indicated the basis for the amendment

in the application as filed.

In its letter of 13 September 2024 in reply to the
board's communication, the appellant stated that the
amendment was supported by paragraph [073] of the
description as originally filed. Generally, the
deletion of an alternative did not introduce added
subject-matter, since by definition two alternatives

could not be inextricably linked.

The appellant also stated that the amendment to claim 1
was a simple deletion of one of two alternatives. This

amendment actually reduced the complexity of the claim,
since only one alternative had to be considered instead

of two.

Furthermore, the deletion of the alternative did not
introduce any clarity issues and narrowed the scope of
the claims and hence could not give rise to new novelty
or inventive-step objections. Accordingly, no
additional issues were raised by the amendment to

claim 1.

Even with the deletion of the alternative "moving a
query statement [...] into a loop already having
another query statement", the third auxiliary request

remained convergent with the second auxiliary request.

The appellant was of the view that, since almost all
the criteria for admitting the amended third auxiliary
request were satisfied, the board should admit this
request. It was not a "fresh case" since the
alternatives were on file before the examining

division.

Claim 1

- 23 - T 2076/22

However, the appellant did not present arguments in
favour of allowing the amended third auxiliary request
with its statement of grounds of appeal. Moreover, in
its letter of 13 September 2024, the appellant still

only argued that the same arguments as presented for
the main request also applied to the third auxiliary
request. There is therefore a lack of specific

arguments in favour of allowing the third auxiliary

request.

Therefore the board does not admit the (amended) third
auxiliary request into the appeal proceedings (Article
12(4) RPBA).

of fourth auxiliary request - admissibility

The board notes that the communication annexed to the
summons to oral proceedings before the examining
division raised the objections that claims 1 and 14 did
not meet the requirements of Article 84 EPC in that the
matter for which protection was sought was not defined.
The claims attempted to define the subject-matter in
terms of the result to be achieved. Moreover, the
subject-matter of claims 1 to 14 did not involve an
inventive step within the meaning of Article 56 EPC,
and the requirements of Article 52(1) EPC were

therefore not met.

The final date for filing written submissions in reply
to the summons in the first-instance proceedings was

9 February 2022. In response to the summons, the
appellant submitted a new main request and new first to
third auxiliary requests. In a communication of

21 February 2022 the examining division informed the
appellant of its objections under Article 56 EPC and
Article 84 EPC against the newly-filed requests and

10.

11.

12.

- 24 - T 2076/22

cited two prior-art documents. The fourth auxiliary
request was submitted during the oral proceedings on
9 March 2022.

Since the late-filed request did not clearly resolve
the objection under Article 83 EPC, the division used
its discretion under Rule 137 (3) EPC not to admit it

into the procedure.

The appellant argued that, since the objection under
Article 83 EPC had been raised for the first time after
the summons to oral proceedings, and the introduction
of a new, main ground for refusal represented a change
of the subject of the proceedings, the request should
have been admitted (Rule 116(2) EPC).

In view of the fact that the examining division had
raised a completely fresh objection under Article 83
EPC during the oral proceedings (and even introduced
new prior-art documents in the communication of

21 February 2022), in the special circumstances of the
current case the examining division should have
admitted the appellant's new claim request filed in
response, i.e. the fourth auxiliary request, all the
more so since the examining division could have raised

at least some Article 83 EPC issues earlier.

According to Article 12(6) RPBA, the Board shall not
admit requests, facts, objections or evidence which
were not admitted in the proceedings leading to the
decision under appeal unless the decision not to admit
them suffered from an error in the use of discretion or
unless the circumstances of the appeal case justify

their admittance.

12.1

Claim 1

13.

14.

15.

le.

17.

- 25 - T 2076/22

The board considers that the decision not to admit the
fourth auxiliary request suffered from an error in the
use of discretion. Therefore it considers the fourth
auxiliary request to be admissible under Article 12(6)
RPBA 2020.

of the fourth auxiliary request and Article 83 EPC

Claim 1 of the fourth auxiliary request differs from
claim 1 of the main request in that the text ", where
possible while preserving program correctness" has been
added at the end of feature J (before the ";"

character) .

The board is not convinced that this amendment

overcomes the objection under Article 83 EPC against
the main request since it does not further define or
limit the DDG and only further emphasises the need to

preserve program correctness.

Feature I specifies that the query inlining combines at
least two query statements "while preserving program
correctness", while the amended feature J specifies
that the query inlining is performed on at least one

sunk query statement "where possible while preserving

program correctness".

The application fails to disclose what conditions are

necessary and/or when it is possible for the query

inlining to be performed on at least one sunk query

statement to preserve "program correctness".

Consequently, the application does not meet the
requirements of Article 83 EPC since it does not
disclose the invention as defined in claim 1 of the

fourth auxiliary request in a manner sufficiently clear

Claim 1

18.

18.1

18.2

Claim 1

19.

- 26 - T 2076/22

and complete for it to be carried out by a person

skilled in the art.

of the fifth auxiliary request - admissibility

In the communication accompanying the summons to oral
proceedings, the board raised Article 84 EPC objections
that had not been raised in the decision (even if some
of them had been raised in communications of the
examining division, but see T 0922/17, reasons 3.1), as
well as new objections or remarks relating to Article

83 EPC.

The board considers that these circumstances are

"exceptional" under Article 13(2) RPBA.

Therefore, the board admits the fifth auxiliary request

into the proceedings, under Article 13(2) RPBA.

of fifth auxiliary request - Article 83 EPC

The amendments made in claim 1 of the fifth auxiliary
request fail to overcome the Article 83 EPC objection
concerning the DDG and raised against claim 1 of the
main request (Article 83 EPC). In particular, the
limitation of the claimed method to use flow
dependencies of a DDG does not help, since the
objection under point 2.7 also applies to flow

dependencies.

T 2076/22

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chair:

(ecours
) aes brevegg
<z
b :
‘/9‘9”(“"3 auy®
Spieog ¥

(4]

[)

0 % Y
Jo :b'\
RN o @@A
Py 22
eyg +

S. Lichtenvort J. Geschwind

Decision electronically authenticated

