BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-] To Chairmen
(D) [X] No distribution

Datasheet for the decision

of 17 December 2020

Case Number: T 1190/16 - 3.4.03
Application Number: 10197199.2
Publication Number: 2472450
IPC: G06Q10/00
Language of the proceedings: EN

Title of invention:
A search method for a containment-aware discovery service

Applicant:
Hasso-Plattner-Institut filr
Softwaresystemtechnik GmbH

Headword:

Relevant legal provisions:
EPC Art. 56

Keyword:

Inventive step - problem and solution approach - ex post facto
analysis - main request (no) - auxiliary request (no)

This datasheet is not part of the Decisior

EPA Form 3030 It can be changed at any time and without notice

Decisions cited:
T 0914/02
German Federal Court (BGH) X ZR 173/07 (Walzgertiist IT)

Catchword:

This datasheet is not part of the Decisior
EPA Form 3030 It can be changed at any time and without notic:

Eurcpiisches

Patentamt
European
Patent Office
Qffice eureplen

des brevets

BeSChwerdekam mern Boards of Appeal of the

European Patent Office
Richard-Reitzner-Allee 8

Boards of Appeal 85540 Haar

GERMANY

Tel. +49 (0)89 2399-0
Chambres de recours Fax +49 (0)89 2399-4465

Case Number: T 1190/16 - 3.4.03

DECISION

of Technical Board of Appeal 3.4.03

Appellant:
(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

of 17 December 2020

Hasso-Plattner-Institut fir
Softwaresystemtechnik GmbH

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam (DE)

Molnia, David

Df-mp DOrries Frank-Molnia & Pohlman
Patentanwadlte Rechtsanwdlte PartG mbB
Theatinerstrasse 16

80333 Munchen (DE)

Decision of the Examining Division of the
European Patent Office posted on 26 February
2016 refusing European patent application No.
10197199.2 pursuant to Article 97(2) EPC.

Chairman G. Eliasson

Members: A. BOhm-Pélissier

G. Decker

-1 - T 1190/16

Summary of Facts and Submissions

IT.

IIT.

The appeal is against the decision of the Examining
Division to refuse European patent application

No. 10 197 199. The refusal was based on the ground of
lack of inventive step (Article 56 EPC).

Reference is made to the following documents:

D5= UNIVERSITY OF CAMBRIDGE ET AL:
"High level design for Discovery Services",
INTERNET CITATION, 15 August 2007, pages 1-112,
XP002638393, Retrieved from the Internet:
URL:http://www.bridge-project.eu/data/File/
BRIDGE%20WP02%20High%201level%20design%20Discover
y$20Services.pdf, [retrieved on 2011-05-23]

D7= MENDLING J ET AL:
"Process Mining of RFID-Based Supply Chains",
COMMERCE AND ENTERPRISE COMPUTING,
2009 CEC '09 IEEE CONFERENCE, IEEE, PISCATAWAY,
NJ, USA, 20 July 2009, pages 285-292,
XP031516536, ISBN: 978-0-7695-3755-9

D8= GYEONGTAEK LEE ET AL:
"Discovery Architecture for the Tracing of
Products in the EPCglobal Network",
EMBEDDED AND UBIQUITOUS COMPUTING,
2008 EUC '08. IEEE/IFIP INTERNATIONAL
CONFERENCE, TEEE, PISCATAWAY, NJ, USA,
17 December 2008, pages 553-558, XP031408685,
ISBN: 978-0-7695-3492-3

At the oral proceedings before the Board on

Iv.

-2 - T 1190/16

17 December 2020, the Appellant (Applicant) requested
that the decision under appeal be set aside and that a
patent be granted on the basis of the Main Request or
the Auxiliary Request filed with the letter dated

16 December 2020.

Claim 1 of the Main Request reads (Board's Labelling):
(A') A search method for identifying from an original
set of event notifications stored in a discovery
service database a subset of event notifications
comprising event notifications relevant for a query
item,

(B') wherein the method is carried out by an
application logic of a system for running a discovery
service,

(C') the system comprising the discovery service
database,

(D'") wherein each event notification is either an
object event notification or an aggregation event
notification,

(E') wherein each aggregation event notification
comprises a timestamp,

(F') wherein each object event notification comprises a
timestamp and an object identifier, the method being
characterized in that

(G'") each aggregation event notification further
comprises an action, a parent identifier, and a child
identifier;

(H') and in that determining the subset comprises the
following steps:

(I'") (A) adding to the subset each object event
notification having an input identifier as object
identifier and a timestamp from an input time span;
(J') (B) adding to the subset each aggregation event
notification having the input identifier as a child

identifier and a timestamp from the input time span;

- 3 - T 1190/16

(K'") (C) invoking steps (A) to (C) for each aggregation
event notification that was added in the last step (B)
and has addition as an action, using the parent
identifier of the corresponding aggregation event
notification as the input identifier,

(L") and using the time span limited by the timestamps
of the first and the last aggregation event
notification added in the last step (B) as the input

time span.

Claim 1 of the Auxiliary Request reads (Board's
Labelling, striking-through for deletions, underlining
for additions with respect to the Main Request) :

(A'') A seareh-method for identifying from an original
set of event notifications stored in a discovery
service database a filtered set of a—subset—of—event
rotifiecations——ecomprising event notifications relevant

for a query item,

(B'') wherein the method is carried out by an
application logic of a system for running a discovery
service,

(C''") the system comprising the discovery service
database,

(D'') wherein each event notification is either an
object event notification or an aggregation event
notification,

(E'') wherein each aggregation event notification

comprises a timestamp, a parent identifier and a child

identifier,

(F'') wherein each object event notification comprises
a timestamp and an object identifier, the method being
characterized in that

(G'') each aggregation event notification further
comprises an action, a parent identifier, and a child

identifier; and in that

- 4 - T 1190/16

(H'') and—wherein determining the subset filtered set

comprises the following steps:

performing a search method to obtain a subset of

event notifications comprising event notifications

relevant for a query item, the search method comprising

the following steps:

(I''") (A) adding to the subset each object event
notification having an input identifier as object
identifier and a timestamp from an input time span;
(J'') (B) adding to the subset each aggregation event
notification having the input identifier as a child
identifier and a timestamp from the input time span;
(K''") (C) invoking steps (A) to (C) for each
aggregation event notification that was added in the
last step (B) and has addition as an action, using the
parent identifier of the corresponding aggregation
event notification as the input identifier,

(L'') and using the time span limited by the timestamps
of the first and the last aggregation event
notification added in the last step (B) as the input
time span

(M'') performing a filter method in order to identify

from the obtained subset of event notifications those

event notifications that are relevant for a query item,

the filter method comprising the following steps:

(N'') creating a filtered list as the filtered set,

which is initially empty;

(O'') creating a stack, which is initially empty;

pushing the unique identifier of the query item

onto the stack; and

repeating the following steps for each event

notification of the set in chronological order:

(P'") pushing the parent identifier of the current

event notification on the stack and adding the current

event notification to the filtered list if the current

event notification is an aggregation event, and

- 5 - T 1190/16

comprises addition as an action, and comprises the

topmost unique identifier of the stack as a child

identifier;

(Q'") removing the topmost unique identifier from

the stack and adding the current event to the filtered

list if the current event notification fulfills

predetermined conditions, wherein the predetermined

conditions comprise: the current event notification is

an aggregation event, and comprises deletion as an

action, and comprises the topmost unique identifier of

the stack as a parent identifier; and

(R"") adding the current event notification to the

filtered events list if the current event notification

is an object event notification and its object

identifier is stored somewhere in the stack.

The Appellant argued essentially as follows:
Document D8 neither alone nor in combination with
document D7 or the common general knowledge taught

(1) to operate on event notifications, which
are stored in the discovery service and
comprise action and aggregation
information, rather than on events, which
are stored in on-site repositories;

(11) running an iterative discovery service
algorithm on a system comprising said event
notifications by narrowing the data space
during each recursion by way of an input
time span;

(1id) applying a two step approach with a
pre-search as claimed in the Main Request
and a second filter algorithm as specified

in the Auxiliary Request.

- 6 - T 1190/16

Reasons for the Decision

1. The invention as claimed

1.1 The invention concerns a "discovery service" which is
suitable for tracking and tracing a "query item"
represented by a "unique identifier™ in a "unique
identifier network". An example for such a network is a
network deployed in a supply chain spanning over one or
more companies. These networks rely on unique
identifier technologies, such as tags (radio frequency
identification [RFID] tags) and unique identifier
coding schemes (bar-codes), and allow item tracking,

item tracing, item authentication, or item supply chain

analysis.

1.2 Examples for unique identifier coding schemes are the
Electronic Product Code ("EPC") coding scheme and the
Unique Consignment Reference ("UCR") coding scheme.

Every time a unique identifier is read, a piece of data
is generated ("object event"). Each event may be stored
on an event server, which is typically located at the
site of the "custodian" (manufacturer, wholesaler,
distributor, retailer or maintenance service company).
An "item" may be any physical object, such as raw
materials, parts and finished goods, medical drugs as
well as containers used to transport other items around
the world (paragraphs [0002] and [0003] of the

application).

1.3 In order to optimise a supply chain, the stored events
may be analysed and information may be extracted by an
Information Service ("IS"). However, each custodian
typically stores all events on its own, local "on-site
repositories™”™, and events relevant for the query item

may be spread out on a plurality of different event

-7 - T 1190/16

servers located at their corresponding companies.
Accordingly, the discovery service should be able to
identify and find all events relevant to the query

item.

Containers, such as pallets and boxes, are used
throughout supply chains to aggregate items for
transportation. The query item may therefore move
"hidden" in a container through the supply chain. The
query item may even be contained in a first container
("child"), which in turn may be contained in a second
container ("parent"). Such higher degrees/levels of
packing are referred to as packing "hierarchy", the
events as "aggregation events". Accordingly, the
discovery service should also be able to identify and
find all events that are relevant to a container
containing the query item (paragraphs [0007] to
[0015]) .

Discovery services ("DS") should be able to distinguish
between trips of a container that are relevant for the
query item and trips that are not relevant for the
query item, because containers can be used many times
and for different products. Falsely detected container
events are called false positives. The discovery
services have to be very fast, e.g. for a prescription
of a medicinal drug only a few seconds are available

for the query.

The present invention addresses these challenges by:
(1) analysing "event notifications", i.e.
translations of the events, stored in the
tracking / tracing / discovery server and
performing the method on the server for
running the discovery service instead of a

separate system, the "event notifications"

- 8 - T 1190/16

comprising an action, a parent identifier,
and a child identifier (Feature (G'));

(idi) providing for a narrowing of the data space
during each recursion by way of the input
"time span", i.e. only events in a relevant
time interval are taken into account
(Features (I') and (L'"));

(1id) using a combined pre-search and filter
approach (Auxiliary Request, Features
(M'"")=(R"")) .

Admittance of the Main Request and Auxiliary Request
into the appeal proceedings, Article 13(2) RPBA 2020

The Appellant filed the Main Request and the Auxiliary
Request after notification of a summons to oral
proceedings. As they address objections raised for the
first time by the board in the communication
accompanying the summons, the Board is satisfied that
these are "exceptional circumstances" within the
meaning of Article 13(2) RPBA 2020, and admits them

accordingly.

Main Request

Closest prior art

D8 discloses an implementation of tracking, tracing and
discovery service functionality on one and the same
server logic. The discovery service analyses event
notifications (abstractions) instead of events on the
repositories. D8 is therefore considered as closest
prior art. D5 discloses details of an EPC system. D7
discloses in an EPC system tracing based on a

dependency graph that is modeled over time.

3.

L2,

L2,

L2,

-9 - T 1190/16

Difference

D8 discloses an EPC discovery service (Fig. 5) as
discussed in more detail in D5. The tracing steps are
listed in sections 4 to 4.2. Tracing is performed by a
so-called ONS/DS manager, comprising an Object Naming
Service, an EPCISDS (Electronic Product Code -
Information Service - Discovery Service) and an EPCISDS
connector (Fig. 3). These components together are
designed in the same logic as one system and are
labelled here "DS". Hierarchical tracing of
aggregations can be performed (Fig. 6). D8 further
mentions that the EPCISDS connector transmits events
and timestamps at intervals of every 10 seconds to the

DS, where they are registered.

During oral proceedings the Appellant acknowledged that
D8 disclosed in Fig. 3, Fig. 6 and sections 3.1 to 4.2
the steps of creating event notifications
(abstractions) on the DS as claimed in Features (A')-
(F'). The Appellant argued that D8 however did not
disclose that each abstraction further comprises an
action, a parent identifier, and a child identifier
(Feature (G')). This was not unambiguously derivable
from the passages cited above and in particular from

Fig. 6. The Board agrees.

As to the feature that tracking, tracing and discovery
service is carried out by the same application logic
comprising the discovery service database (Features

(B') and (C')), D8 discloses to use one system, where
all data is easily available (see section 3: "ONS and
EPCISDS are designed as one system for user
convenience. The system is named the ONS/DS Manager and

its structure can be seen in Figure 3").

2.

.3.

- 10 - T 1190/16

It was discussed at the oral proceedings that the

construction of a complete distribution path and the

tracing method (steps (1) to (6) in section 4.2)

implies most of Features (H')-(K'). The Appellant

submitted that the method disclosed in D8 however did

not disclose that:

(a) the event notifications comprise an action, a
parent identifier, and a child identifier;

(b) the method provides for a narrowing of the data
space during each recursion by way of the input

time span.

The Board agrees with the Appellant's submissions that

D8 does not disclose differences (a) and (b).

Effect

The Appellant argued in the statement of grounds of
appeal that the effect of the above differences was an
improved tracing of a tangible item in a physical
supply chain. The data in the repositories did not need
to be accessed in their entirety, which put load on the
network and introduced the risk of a data security
breach. This resulted also in that significantly less

memory and computational effort was required.

Transferring the entire data stored in the on-site
repositories to the tracing service system was also not
required, which reduced load on the network, delay
times and data security risks. By installing the
tracing logic in the discovery server unnecessary
duplication of data and logic was avoided wherein on
the other side security and efficiency was increased,
since all translations took place internally within the

discovery service.

3.5
ad (a)
3.5.1

- 11 - T 1190/16

The Board agrees with the Appellant and that these

effects are technical.

Problem

The problem to be solved can therefore be considered as
tracing a tangible item in a physical supply chain and
thereby using less computer resources - such as memory,
processing time, network resources and logic - and

improving security.

Obviousness

The Appellant argued that the prior art tracing method
steps operated on the measurement data stored on the
on-site repositories, namely the "events", whereas the
claimed tracing method steps operated on "event
notifications", which are stored on the discovery
service. Therefore, even if the tracking functionality
was implemented on the discovery service system, this
would hardly improve the performance thereof, because
data would still need to be fetched from the on-site
repositories. D8 did not disclose to upload the event

data listed in Feature (G') into the abstracts.

The Board however is of the opinion that D8 teaches to
upload translated event data. If, according to the
problem to be solved, computer power, processing time
and memory space are to be reduced, the skilled person
would consider to reduce the number of queries to the
repositories as far as possible, because these Internet
connections require time and increase the load onto the

network.

.5.

.5.

.5.

- 12 - T 1190/16

In D8 abstractions of events are uploaded into the
discovery service (see Fig. 6 and section 3.1, third
last sentence of the last but one paragraph: "The
EPCISDS connector requests the subscription of all
events to the EPCIS and transmits an abstraction of the
result at intervals of every 10 seconds. The
abstraction contains the URL of the EPCIS, timestamp,
EPC and event type"). The Board agrees with the
Appellant that these abstractions correspond to the
event notifications in the present claim and that D8
does not explicitly disclose that the abstractions
contain the "action" such as "addition" and "deletion"

or "parent/child information".

The abstractions however contain the information
"aggregation" as shown in the inlets of Fig. 5
("aggregation") and Fig. 6 ("General Query" -> "Event
Type" = "AggregationEvent"). D8 further discloses that
"[t]he Tracing Service operates on the ONS/DS manager
[...] to get the complete distribution path of the
product" (last sentence on page 556). In order to
determine the complete distribution path a kind of
dependency graph has to be construed as discussed in
section II.D of D7. The complete distribution path
however requires the information about "deletion
events" and "addition events", i.e. removal of the
product from a container or addition of the product to

a container, as well as parent / child information.

This aggregation data is available at least via the URL
link in the abstractions (Fig. 6). The Board finds that
during translation of the event data into the
abstractions the whole event data, i.e. comprising also
action / aggregation information, has to be loaded into
the virtual memory of at least one of ONS/DS, EPCICDs

ad (b)
3.5.10

- 13 - T 1190/16

or EPCISDS connector. This data is therefore at least

temporarily stored on the DS.

It is therefore obvious in view of the disclosure of D8
and the problem to be solved that any event information
necessary for construing the complete distribution path
is instantly available in the Discovery Service instead
of being available only via the URLs and further

querying.

In view of the fact that the full event data is
accessed on the EPCIS and therefore saved in the
virtual memory of the DS, it would be wasteful - and
contrary to the problem to be solved - not to save
these data into a permanent memory of the DS, since
this data is needed later for construing the complete

distribution path.

In order to reduce the network load and processing time
while providing the complete distribution path it would
therefore be necessary to keep the required event
information available in the abstractions on the DS
instead of having to repeatedly fetch event data from

the on-site repositories.

Therefore, Feature (a) is obvious in the light of the

disclosure and teaching of DS8.

If computer power, processing time and memory space are
to be reduced, the skilled person would first consider
to search only events which are relevant with respect
to object number, action and time span. The skilled
person would therefore consider only relevant object
identifiers and timestamps within a given relevant
input time span (time interval) and in relevant

locations. As known from everyday life, nobody would

3.5.11

3.5.12

- 14 - T 1190/16

search a front door key at places outside their house
and at places where they have been the day(s) before,
if the key was lost at the same day after opening the
front door of the house. The skilled person would
accordingly use only time spans and parent/child
identifiers relevant to the events, e.g. consider only
events of a relevant day and not all the other 364 days
of the year.

D8 teaches to consider timestamps but does not teach to
query for specific time intervals (see section 3.5.3
above) . D7 however teaches that a '"query can be
controlled by several parameters, e.g. time intervals,
EPCs, locations etc." (last but one sentence of section
ITI.D). D7 furthermore teaches to iteratively construe a
dependency graph (see section II.D). The complete
distribution path of the product mentioned in D8 is
such a dependency graph. Independent of the teaching of
D7, it is common sense that only those events are
considered which are within a relevant time span /

interval.

It is, for example, evident that it would make no sense
to consider events related to a container for a time
span where a product could not be inside the container.
If a product is added to a container at a time x for
the first time, one does not have to consider container
events earlier than x. If a product was definitely
removed from a container at a time y, it also does not
make any sense to consider any events related to this
container later than y. It is therefore an obvious
measure to adapt the relevant time span for each
container and to evaluate the relevant time span in

each recursive step.

3.5.13

3.5.14

4.2

- 15 - T 1190/16

The container time intervals ("input time span")
therefore become narrower during iteration. For
example, when tracing a product over its complete
distribution path, it would have spent a shorter time
span on a ship than that it spent inside a shipping
container, which again is a shorter time span than that
inside the product packaging. It follows that a method
taking into account only relevant time spans provides
for a narrowing of the data space during each recursion

by way of the input time span.

Therefore, Feature (b) is obvious in the light of the
disclosures and teachings of D7 and D8. Consequently,
the subject-matter of claim 1 of the Main Request does
not involve an inventive step within the meaning of
Article 56 EPC.

Auxiliary Request

Closest prior art

Although D7 discloses several added features
corresponding to an iterative method of construing a
dependency graph, D8 is still considered to be the

closest prior art.

Difference

Features (M'')-(R'') are not disclosed in DS8.

Effect

The claimed method first applies a (pre-)search method
and then subsequently applies a filter method that

filters out any remaining false positives. Focusing on

steps (I')-(L') on specific time spans has the

.3.

.3.

- 16 - T 1190/16

consequence that event notifications may be extracted
which correspond to containers having contained the
traced product at a certain moment in a relevant time
span, but in reality did not contain the product,
although detected "positively" in the algorithm of
(I')-(L").

The method defined in the Main Request has the drawback
that too many false positives may be generated
(statement of the grounds of appeal, section C, first
paragraph) . The problem of false positives for EPC
discovery services is well-known (application,
paragraph [0072]; D5, section C.3.2, last but two
paragraph, and section C.4.1, last but one bullet
point) .

These false positives are filtered out in a second
filter method as defined in steps (M'')-(R'') of the

Auxiliary Request.

Problem

The problem can be formulated as filtering out false
positives being a result of the filter method defined
in the Main Request. This problem can be assessed
independently from the problem formulated in section

3.4 above, but is a direct consequence of it.

Obviousness

In order to eliminate irrelevant container events, the
additional filter algorithm of the Auxiliary Request
corresponds to a stack algorithm which construes in
chronological order a dependency graph of the transport
chain by maintaining only relevant events. By following

the distribution path for each event notification from

.5.

.5.

.5.

- 17 - T 1190/16

the subset filtered out in the filter method (steps
(H')-(L")) it is verified whether the current event
notification is an object event notification and its
object identifier is stored somewhere in the stack
(Feature (R''")).

Features (M'')-(R'') correspond to a stack keeping
track of the hierarchy of containers containing an item
of interest at the time of the current event in the
list of event notifications. However, since the
hierarchy of containers containing the element of
interest changes in a last-in-first-out manner (the
last closed container is the first opened one) - which
per definition is the manner in which a stack operates
- it is straightforward to use a stack in order to keep
track of this hierarchy while processing the sequence

of events.

This realisation is common sense, namely, that the
outermost container - which is the last one into which
an item has been enclosed - is the first one to be
opened. Knowing that the hierarchy of containers
changes in a last-closed-first-opened manner and
needing thus to keep track of the hierarchy that
changes in a last-in-first-out manner, the skilled
person would straightforwardly resort to a stack data
structure since this is the data structure to be used
for information that changes in a last-in-first-out
manner (see also D7, section II.C and the algorithm

disclosed in Fig. 4).

D7 teaches to perform a single in-order pass over the
set of chronologically ordered events ("The events are
propagated through all their descendants in the graph";
"we maintain a dependency graph holding at each point

in time the current relations between EPCs while we

.5.

.5.

- 18 - T 1190/16

replay the event log in chronological order", page 288,
left column, second and third paragraph, Fig. 4). In
order to find the items to which a certain event is
relevant, the hierarchy of containers at the current
time in the stream of events needs to be maintained in
order to propagate an event related to an item to all
its current descendants, i.e. to all items contained by
the item. In D7 the tree data structure that needs to
remember the hierarchy of containers at a certain time
only needs to remember the containers enclosing the
item of interest, wherein the tree structure becomes in
fact a stack as claimed. Also, only the associations
between the queried item of interest and its relevant

events need to be remembered.

The same section of D7 also teaches to use a two-step
approach. In a pre-search step relevant events are
mapped into a MXML file (Fig. 3) by querying events
from an EPCIS repository (the "Mining XML" MXML format
is a generic XML based format designed to store log
files). In a second step a workbench filters out the
relevant elements from the pre-selected events in the
MXML file and construes the dependency graph. It is

therefore a normal option to query in several stages.

The Appellant argued that claim 1 of the Auxiliary
Request comprised a plurality of complex features not
explicitly disclosed in the prior art and that there
were no pointers in the prior art towards the solution
as defined in the claims. As was reasoned in the
decision of the German Federal Court dated

7 September 2010, file number

X ZR 173/07 ("Walzgeriist II"), Reasons 36, the
suggestion required for an obviousness of the solution

according to the invention could not be replaced by the

.5.

.5.

- 19 - T 1190/16

factual logic of the proposed solution of the

invention.

Steps (N'')-(R''") do not define independent complex
technical features, but a single last-in-first-out
stack algorithm following the packaging hierarchy
according to the logic of D7 and common sense. In
decision T 914/02, Reasons 2.3.4, it was held that "it
is doubtful as a matter of principle whether complexity
can be used to disqualify an activity as a mental
activity". Accordingly, in the present case it could be
argued that it is doubtful as a matter of principle
whether a complex wording of a straightforward
algorithm can be used to disqualify the algorithm as

being obvious.

It is therefore not a hindsight analysis to conclude
that starting from the disclosure of D8 - in order to
remove the false positives - the skilled person would
consider an iterative method for construing the
dependency graph as suggested in D8 (complete
distribution path) in combination with D7 (dependency
graph) and straightforwardly use a stack to keep track

of the hierarchy of containers.

To summarise the subject-matter of claim 1 of the
Auxiliary Request is not inventive within the meaning
of Article 56 EPC in view of the teaching of D8 in
combination with the teaching of D7 and the common

general knowledge.

T 1190/16

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

4
/:7/99”‘”"3 ani®
Spieog ¥

3 o

&
&

2
(4

S. Sanchez Chiquero G. Eliasson

Decision electronically authenticated

