BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-1 To Chairmen
(D) [X] No distribution

Datasheet for the decision

of 3 May 2019

Case Number: T 0900/14 - 3.5.04
Application Number: 06847852.8
Publication Number: 1964403
IPC: HO4N7/16
Language of the proceedings: EN

Title of invention:

Programmable multimedia controller with programmable services

Applicant:
Savant Systems LLC

Headword:

Relevant legal provisions:

EPC 1973 Art. 56

Keyword:
Inventive step - (no)

Decisions cited:
T 2270/10

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

Catchword:

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

9

Case Number:

Appellant:

Boards of Appeal of the
E.:;f‘ﬁ':;;::'" BeSChwe rdekam mern European Patent Office
European Richard-Reitzner-Allee 8
Patent Office Boards of Appeal 85540 Haar
Qffice eureplen GERMANY
des brevets Tel. +49 (0)89 2399-0
Chambres de recours Fax +49 (0)89 2399-4465

T 0900/14 - 3.5.04

DECISION

of Technical Board of Appeal 3.5.04

(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

of 3 May 2019

Savant Systems LLC
32 Wianno Avenue
Osterville, MA 02655 (US)

Rupprecht, Kay

Meissner Bolte Patentanwalte
Rechtsanwalte Partnerschaft mbB
Widenmayerstrale 47

80538 Miinchen (DE)

Decision of the Examining Division of the
European Patent Office posted on 24 October 2013
refusing European patent application No.
06847852.8 pursuant to Article 97 (2) EPC.

C. Kunzelmann

R. Gerdes

T. Karamanli

-1 - T 0900/14

Summary of Facts and Submissions

IT.

IIT.

Iv.

VI.

The appeal is against the decision to refuse European
patent application No. 06 847 852.8, published as
international application WO 2007/075816 AZ2.

The examining division refused the patent application
on the grounds that the subject-matter of the
independent claims of the then main and auxiliary

requests lacked inventive step in view of document:

D1: US 2004/0267914 Al

In its decision, the examining division also referred

to document:

D2: EP 1 355 485 Al

The applicant/appellant filed notice of appeal against
this decision. With its statement of grounds of appeal,

it submitted claims of new main and auxiliary requests.

The board issued a summons to oral proceedings together
with a communication according to Article 15 (1) RPBA.
In the communication, the board gave its preliminary
opinion that the claims of the appellant's main and
auxiliary requests did not involve an inventive step
(Article 56 EPC 1973).

The appellant replied with letters dated 2 April 2019
and 30 April 2019. With the letter of 30 April 2019,
the appellant submitted amended claims of a main

request, replacing the claims of all previous requests.

Oral proceedings were held before the board on

3 May 2019. During the oral proceedings, the appellant

VII.

-2 - T 0900/14

filed amended claims according to a new main and sole
request and stated that the new main request replaced
the previously filed main request. The appellant's
final requests were that the decision under appeal be
set aside and that a European patent be granted on the
basis of the claims of the main and sole request filed

at the oral proceedings of 3 May 2019.

Claim 1 of the main request reads as follows:

"An integrated multimedia, entertainment,
communications and control system having an environment
for creating programmable services to be performed by

said system comprising:

at least one component profile which includes
information regarding a physical characteristic of a
predetermined component which may be interfaced with
said system, one or more commands that said component
recognizes, and one or more functions that said

component 1is capable of performing;

at least one zone configuration which includes
information regarding an identification of a plurality
of components that are present in one or more
predetermined zones and one or more types of
controllers available to the user in said predetermined

zonesy

a connection configuration which includes information

regarding how components are interconnected;

at least one service rule which includes information
regarding what component functions are needed to
implement a predetermined programmable service and how

a particular group of components providing said

VIIT.

- 3 - T 0900/14

functions will interact to provide said predetermined

service;

a configuration compiler, that is configured to receive
as an input said at least one component profile, =zone
configuration, connection configuration and service
rule, and which is configured to generate as an output
a service implementation that describes in machine-
readable markup language how to utilize a particular
group of components to provide said predetermined

service;

a workflow generator that is configured to generate,
responsive to said service implementation, a graphical
workflow that graphically represents said service
implementation, and an executable program, said
graphical workflow viewable by a user in an application
and including a plurality of panels that represent
discrete actions that are executed consecutively to
provide said predetermined service, said executable
program being executable to provide said predetermined

service; and

a workflow browser/search engine/customization
application configured to display, inspect and modify
the graphical workflow, wherein, when a user edits said
graphical workflow, said executable program is
automatically changed in accordance with the user's

edits."

In the decision under appeal (see point B.1.4), the
examining division acknowledged that D1 did not
disclose the feature of "at least one service rule
which includes information regarding what component
functions are needed to implement a predetermined

programmable service and how a particular group of

IX.

- 4 - T 0900/14

components providing said functions will interact to
provide said predetermined service". In addition,
claim 1 of the then main request differed from D1 in
that the programming environment was a graphical
programming environment, whereas D1 disclosed textual

development tools.

The technical effect of the first distinguishing
feature was that tasks could be performed by more than
one device in the network. The corresponding technical
problem was to develop applications that required the
capabilities provided by more than one device in the
network. Referring to D2, the examining division argued
that the requirement of interoperability of different
devices in universal plug and play (UPnP) systems was
well known. Therefore, it would have been obvious to
use services provided by more than one device to

implement an application scenario.

Regarding the second distinguishing feature, the
examining division argued that D1 disclosed textual
development tools. It was also well known at the
priority date of the application to use graphical
development tools as an alternative to classical
programming languages. Hence, the claimed subject-

matter lacked an inventive step.

The appellant's arguments, as far as relevant to the

present decision, may be summarised as follows:

Apart from some differences in the configuration data
that were input to the system of claim 1, D1 did not
disclose the workflow generator and the "workflow
browser/search engine/customization

application" (henceforth only referred to as "workflow

browser") of the present claimed invention. There was

- 5 - T 0900/14

no graphical representation of actions occurring in a
corresponding executable program, much less a graphical
workflow with panels that represented discrete actions

executed consecutively.

By modifying an executable program in response to edits
to graphical workflows, the inventive technique allowed
a user with little or no programming expertise to
customise a service as desired since they could modify
an executable program by changing a graphical workflow,
rather than by writing lines of program code. Another
effect was the immediate and direct modification of an
executable program after receiving the user's input. To
modify the executable, the programming did not have to
restart at the beginning (input services in D1), but
could be carried out using the workflow browser. Hence,
an essential difference with respect to D1 was the
short feedback loop using the workflow browser. Based
on this, the service controller could execute the
corresponding program without any delay allowing a

quicker response to changes made by a user.

According to the invention, the graphical workflow and
the executable program were linked such that editing
the graphical workflow automatically caused a
modification in the executable program. There was no
link between a graphical workflow and an executable
program in Dl1. In D1, no edits to a graphical workflow
were received. Nor were any modifications made
automatically in response to such edits to a graphical

workflow.

The invention addressed the technical problem of
configuring a group of disparate components to work
together to provide a service, while allowing a user

without detailed knowledge of software code to

- 6 - T 0900/14

understand, and potentially modify, how this was

performed.

Rather than having to understand software code, a user
could simply look at a graphical workflow having panels
representing discrete actions that were executed
consecutively to understand what actions were occurring
in the corresponding software code and potentially
modify them. D1 taught away from the inventive
technique. D1 envisioned operation according to "plug
and play" principles, with the workings of underlying
source code largely hidden from the user (see statement
of grounds, points 4 to 16, and the letter dated

2 April 2019, point 3).

Reasons for the Decision

1. The appeal is admissible.

2. It is common ground that Dl may be considered the

closest prior art for the subject-matter of claim 1.

2.1 D1 discloses a system for generating UPnP control
points, which serve to control network devices to
perform specified actions ("services"). The control
points discover devices connected to the network and
retrieve XML documents that describe the services
provided by the devices as well as associated
information (see paragraphs [0002], [0010], [0015]
to [00177).

To generate the control point software, a control point
generator (engine) contains input services that receive
control point target information such as device and/or

service descriptions and/or platform specific

-7 - T 0900/14

information. The control point target information may
be received via an interface such as a keyboard or a
network from a programmer. Code services in the
generator engine produce code for the desired control
point from the control point target information. In a
further step, compile services are used to compile the
generated control point code (see paragraphs [0018]

to [0032]).

Hence, D1 discloses an environment for creating
programmable services having component profiles and
service rules within the meaning of claim 1 (device and
service descriptions). The code service of DI
corresponds to the configuration compiler of claim 1
except that the code services "generate custom source
code and/or interfaces tailored to the enhanced control
point" (see paragraph [0025]), whereas the
configuration compiler of claim 1 generates "as an
output a service implementation that describes in
machine-readable markup language how to utilize a
particular group of components to provide said
predetermined service". Finally, the compile service
produces an executable program similarly to the

workflow generator of claim 1.

D1 also implicitly requires zone and connection
configurations like in claim 1 to be able to establish

the control point software.

Hence, D1 fails to disclose the following features of

claim 1:

(a) at least one service rule which includes
information regarding ... how a particular group of
components providing said functions will interact

to provide said predetermined service

- 8 - T 0900/14

(b) a configuration compiler, ... which is configured
to generate as an output a service implementation
that describes in machine-readable markup language
how to utilise a particular group of components to

provide said predetermined service

(c) a workflow generator that is configured to
generate, responsive to said service
implementation, a graphical workflow that
graphically represents said service
implementation, ... said graphical workflow
viewable by a user in an application and including
a plurality of panels that represent discrete
actions that are executed consecutively to provide

sald predetermined service

(d) a workflow browser/search engine/customization
application configured to display, inspect and
modify the graphical workflow, wherein, when a user
edits said graphical workflow, said executable
program is automatically changed in accordance with

the user's edits

Feature (a) relates to the input data of the claimed
system, whereas feature (b) refers to an internal data
representation in the system. Features (c) and (d)
relate essentially to the user interface for the design
process. Hence, the board considers features (a)

and (b) to provide effects that are unrelated to each
other and can be dealt with separately and
independently of those associated with features (c)

and (d).

Regarding feature (a), the board agrees with the

decision under appeal that the corresponding technical

-9 - T 0900/14

effect is that tasks can be performed by more than one

device in the network.

Distinguishing feature (b) refers to an alternative
representation of the custom source code disclosed in
D1 (see paragraphs [0028] and [0029]).

The board agrees with the decision under appeal that
the technical problem solved by feature (a) may be
considered as developing applications that require the
capabilities provided by more than one device in the
network (see point VIII above). Feature (b) solves the
technical problem of providing an alternative

representation of the custom source code.

The appellant argued that features (c) and (d)
specified a graphical programming environment which
allowed the immediate and direct modification of an
executable program after receiving the user's input. To
modify the executable, the programming did not have to
restart at the beginning (input services in D1), but
could be carried out using the workflow browser. Hence,
an essential difference with respect to D1 was the
short feedback loop in response to program

modifications using the workflow browser.

Claim 1 does not contain features supporting this
technical effect. Claim 1 specifies that the workflow
generator generates the graphical workflow and an
executable program which is automatically changed in
accordance with the user's edits of the graphical
workflow. Neither of these features nor the
corresponding passages of the description (see page 16,
lines 5 to 18) provide details regarding the generation
of the executable in response to user edits. Therefore,

changes to the graphical workflow could be converted

.10

- 10 - T 0900/14

into changes to the service definitions (see

figure 4: 364), which would then be processed by the
workflow generator to generate the modified executable.
Such processing would be very similar to the initial
generation of the graphical workflow and the
corresponding executable and would not lead to a short
feedback loop. The fact that figure 4, which is a block
diagram showing the major software components involved
in creating services in an illustrative embodiment,
does not show an arrow pointing from the workflow
browser (358) to the services definition (364), does
not imply that claim 1 excludes such a generation of
the modified executable. Hence, the effect of a quicker
response to changes made by a user due to a short

feedback loop in claim 1 is not credible.

The appellant also argued that the graphical
programming environment specified by features (c)

and (d) allowed a user with little or no programming
expertise to customise a service as desired since they
could modify an executable program by changing a
graphical workflow rather than by writing lines of
program code. Consequently, the claimed invention
addressed the technical problem "of configuring a group
of disparate components to work together to provide a
service, while allowing a user without detailed
knowledge of software code to understand, and
potentially modify, how this is performed" (see

point IX above).

It has been held in decision T 2270/10 that the
question of whether a program is easy to read and
maintain is largely a subjective one. However, the
deciding board in T 2270/10 did not exclude that
concrete details of a graphical user interface could

simplify the use of a computer as a technical device

.11

.12

- 11 - T 0900/14

and/or simplify the use of the computer when applied to
solving a technical problem. It could thus contribute
to solving a technical problem (see Reasons, points 8.2
and 9).

Claim 1 contains the features that the graphical
workflow includes a plurality of panels representing
discrete actions and that a user edits this graphical
workflow. These features might be considered as
concrete details of the graphical user interface.
However, 1t remains gquestionable whether providing
panels representing discrete actions and a graphical
editor necessarily results in a better understanding of

the software code and a simplified use of the computer.

There is no need to further consider this question,
because, even if the board agrees with the appellant's
formulation of the technical problem resulting from
features (c) and (d), this question does not affect the
outcome of the decision. Hence, in the following the
board adopts the appellant's formulation of the
technical problem corresponding to features (c) and (d)

(see point 2.9 above).

Regarding feature (a), the board agrees with the
decision under appeal that there was an apparent demand
for services that needed to be performed by more than
one device in the network. Hence, it would have been
obvious to specify rules determining how a particular
group of components interact to provide the service
(see point VIII). With respect to feature (b), the
alternative representation of the source code in markup
language was well known to the skilled person, and it

would have been obvious to use that representation.

- 12 - T 0900/14

2.13 Regarding features (c) and (d), the board also agrees
with the decision under appeal that graphical
development tools were well known in the art and
commonly used as an alternative to classical
programming languages (see point VIII above).
Displaying a program in step-by-step execution was
common practice in integrated development environments
and debugging tools, which were often provided with
graphical user interfaces employing panels representing
discrete actions. Similarly, graphical editors
(workflow browser/search engine/customisation
application) were well known in the technical field of
software development. Hence, depending on the
circumstances, the skilled person would have considered
to use such graphical development tools in the system
of DI1.

2.14 As a result, the subject-matter of claim 1 would have
been obvious to the person skilled in the art in view
of D1 and the common general knowledge and thus lacks
inventive step (Article 56 EPC 1973).

Conclusion
3. It follows from the above that the appellant's request

is not allowable and that therefore the appeal is to be

dismissed.

- 13 - T 0900/14

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

werdekg

C’\\ aischen p, /7)
%Qf.’:, o ofP Aty /][9070»
N /9@ 2

"
2%,
° S

8 X
s S
o 0.1 op ag\),\,“g 95

7
Tweyy o

g sy y°
Spieo@ ¥

&
=}
o
o
<)
-

o des brevetg

&
%4,
(]

by

K. Boelicke C. Kunzelmann

Decision electronically authenticated

