BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-1 To Chairmen
(D) [X] No distribution

Datasheet for the decision

of 12 January 2018

Case Number: T 0790/14 - 3.5.06
Application Number: 09751296.6
Publication Number: 2297639
IPC: GO6F9/50, GO6F9/45
Language of the proceedings: EN

Title of invention:
METHOD OF USING PARALLEL PROCESSING CONSTRUCTS

Applicant:
The MathWorks, Inc.

Headword:
Programming language construct/MATHWORKS

Relevant legal provisions:
EPC Art. 56

Keyword:
Inventive step - (no)

Decisions cited:
T 0423/11, T 1539/09

EPA Form 3030 This datasheet is not p(lirt of thle Decision..
It can be changed at any time and without notice.

Catchword:

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

Europasches Beschwerdekammern European Patent Office
D-80298 MUNICH
0, Patent Office Boards of Appeal GERMANY
Office eurepéen Tel. +49 (0) 89 2399-0
des brevets Chambres de recours Fax +49 (0) 89 2399-4465

Case Number: T 0790/14 - 3.5.06

DECTISTION
of Technical Board of Appeal 3.5.06
of 12 January 2018

Appellant: The MathWorks, Inc.

(Applicant) 3 Apple Hill Drive
Natick, MA 01760-2098 (US)

Representative: Miller-Boré & Partner
Patentanwalte PartG mbB
Friedenheimer Briicke 21
80639 Miunchen (DE)

Decision under appeal: Decision of the Examining Division of the
European Patent Office posted on 29 November
2013 refusing European patent application No.
09751296.6 pursuant to Article 97 (2) EPC.

Composition of the Board:

Chairman W. Sekretaruk
Members: S. Krischer
A. Teale

-1 - T 0790/14

Summary of Facts and Submissions

IT.

ITI.

Iv.

VI.

VII.

VIIT.

The appeal is directed against the decision of the
examining division, dated 29 November 2013, to refuse
application No. 09751296.6 for added subject-matter
(Article 123(2) EPC) and lack of clarity (Article 84
EPC) .

A notice of appeal was received on 3 February 2014. The
appeal fee was paid on the same day. A statement of
grounds of appeal was received on 10 March 2014. Claim
sets according to a main and an auxiliary request were
filed.

In a communication dated 27 July 2017, the rapporteur

raised an objection of lack of inventive step.

In a letter dated 29 August 2017, the appellant
submitted arguments and filed a much redrafted claim

set as its sole request.

In its summons to oral proceedings, the board mainly
gave further reasons why the claims still lacked an

inventive step.

In a letter dated 11 December 2017, the appellant
submitted further arguments and filed a clarified claim

set as its sole request.

Oral proceedings were held on 12 January 2018. At their

end, the board announced its decision.

The appellant requests that the decision under appeal
be set aside and that a patent be granted on the basis
of the request of 11 December 2017. The other

IX.

-2 - T 0790/14

application documents are the same as in the appealed

decision.

Claim 1 reads as follows:

"l. A computing device-implemented method for
performing parallel processing, comprising:
receiving (2210), by a client (500), a program
(810), wherein the program (810) comprises an SPMD
command;
analyzing (2220) and transforming the program
(810);
determining (2230) an inner parallel context (830)
and an outer parallel context (820) of the program
(810) based on the analysis of the program (810),
wherein the inner parallel context (830) and
the outer parallel context (820) include boundaries
(840) of the program (810),
wherein the boundaries (840) include an spmd
statement and an end statement,
wherein the inner parallel context (830)
includes a code block within the boundaries (840)
and the outer parallel context (820) includes a
code block outside the boundaries (840);
executing (2240), by the client (500), the outer
parallel context (820) of the program (810)
sequentially;
detecting input variables and output variables used
within the inner parallel context (830), wherein the
input variables include variables used within the inner
parallel context before they are assigned values;
allocating (2270) the inner parallel context (830)
of the program (810) and the detected input variables
to two or more labs (420) for parallel execution,
wherein the allocating comprises dividing a large data

set into pieces and providing each piece of data to a

- 3 - T 0790/14

different one of the labs (420), such that each lab
(420) executes the same program on its piece of data;
wherein each of the labs (420) includes
hardware, software or a combination of hardware and
software that performs parallel processing,
wherein there is no implicit data transfer to
and from the client (500) and the labs (420) that
will execute the inner parallel context,
if an input variable to be transferred from the
client (500) to the labs (420) is a distributed
array, then the variable will be automatically
redistributed to the labs (420),
if an input variable to be transferred from the
client (500) to the labs (420) is a non-distributed
array, then the variable will be replicated on the
labs (420)
executing the one or more portions of the inner
parallel context on the two or more labs (420);
receiving (2280) one or more results associated
with the parallel execution of the inner parallel
context from the two or more labs (420),
wherein the names of the output variables are
propagated to the outer parallel context but the values
associated with the output variables are not copied to
the outer parallel context; and
providing (2290) the one or more results to the

outer parallel context (820) of the program (810)."

Reasons for the Decision

1. Summary of the invention

The application relates to the definition of a specific

parallel programming language construct, the so-called

- 4 - T 0790/14

SPMD command (see figure 8 and page 14, line 28, to
page 16, line 10; in particular page 15, line 27),
including the way it is supposed to be executed on a

parallel computer system.

Inventiveness

Programming language constructs (i.e. the commands and
their syntax) are the main part of the definition of a
programming language. The way they are executed also
belongs to the definition of a programming language,

namely to its operational semantics.

However, programming language constructs are even more
abstract than programs which are as such excluded from
patentability. Furthermore, programming is a mental
act, and programming language constructs have the
intrinsic aim of enabling and easing the work of a
programmer which itself lacks technical character (see
T423/11, 3.9-3.12 and T1539/09, 4.).

Therefore, the design and the definition of programming
language constructs (including the operational
semantics, the data flow, the error handling and side
effects) is not considered to contribute to the
technical character of claimed subject-matter and thus
cannot establish the presence of an inventive step. In
the present case, the claimed method merely represents

the operational definition of the SPMD command.

The board finds that the technical effects indicated in
the grounds of appeal (page 9, bottom to page 10, first
paragraph; page 15, second paragraph) are not

convincing:

- 5 - T 0790/14

"resource allocation is efficient and flexible":
the resource allocation is mainly done by the
programmer who has to deliver remote references to
labs in one of the input variables of the program
he/she is writing (see step of detecting input
variables in claim 1); see below for a more
detailed argumentation; furthermore, there is no
technical disclosure of the allocation in the
description;

"it is easy to send ordinary variables into
parallel code"/"data is transferred between code
executed in parallel and code executed sequentially
in an easy and efficient way": this relates to the
design and the definition of the SPMD command and
therefore does not contribute to the technical
character; furthermore, the input variables (i.e.
the variables which are used in the SPMD body (=
inner parallel context) before they are assigned
values; see page 23, second paragraph) anyway have
to be transmitted to the labs, since otherwise the
labs cannot execute the code in the SPMD body;
"minimal data transfer via the use of remote
reference": this also relates to the operational
definition of the SPMD command; furthermore, the
word "minimal" needs a point of comparison;
however, other parallel programming language
constructs are deliberately defined to work
differently; they cannot be compared with the
present SPMD command in order to show a technical
improvement (i.e. a technical effect), since they
are defined to do something different; see below
for a more detailed argumentation;

"when an error occurs and parallel execution is
interrupted, work can be picked up from where the

interruption occurred and need not be resumed from

- 6 - T 0790/14

the beginning of a task™: this relates to the
design of the error handling in the definition of
the SPMD command; furthermore, error handling is no

longer set out in the claims.

The board agrees with the appellant that, in contrast
to a mere (non-technical) definition of a programming
language construct, a computer-implemented method for
executing a program might produce a technical effect
while it executes a program, for example if the new
method executes the program faster than a prior art
method, or if less data transfer is needed during
execution (as is stated in the letter dated 29 August
2017, page 7, second paragraph; for the prior art
method see the paragraph bridging pages 7 and 8).
However, this effect can only be produced if the new
method executes the same program as the prior art

method.

In the present case, a second program containing the
new programming language construct ("SPMD command")
would have to be written by a human programmer to
perform exactly the same function (i.e. having the same
input-output-behaviour) as a first program which does
not contain the new construct and can be executed by

the prior art executing method.

Thus, in order to compare the two methods executing the
same program, a human programmer is needed to transform
one program into another in order to make it executable

by the other execution method.

Therefore, no technical effect is achieved by a new
execution method with respect to an existing execution

method, if the programming language accepted by each of

.10

.11

-7 - T 0790/14

the two execution methods is different. This is the
case 1if the new programming language contains at least
one new command. A command is new, even if the keywords
of the new command are already used (here "SPMD" and
"END"; see page 15, line 27), but the command allows
additional information to be entered by the programmer
(here "IN1" and "OUT1" for the input and output
variables; see also page 15, line 27) or is to be

executed differently.

Furthermore, it is this extra work by the programmer
(to indicate the input and output variables to be
transferred between the client computer and the lab
computers) which allows the new execution method to
reduce the amount of data to be transferred (see letter

of 29 August 2017, page 8, second paragraph).

Thus, even if the former argument of the impossibility
of comparison with an existing execution method were
not valid, an inventive step would still not be
involved, since the new method merely does what the
programmer tells it, namely only transferring the input
and output variables which the programmer has
indicated. The inventive merit of the alleged reduction
in the data transfer would be due to the programmer,

and not to the execution method.

Therefore, the subject-matter of the claims is not

inventive.

- 8 - T 0790/14

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

werdekg

C’\\ aischen p, /7)
%Qf.’:, o ofP Aty /][9070»
* N /9@ 2
N
Qe 2w
S>3 2 O
o= £3
® g S
°,
© % %
) > A
‘p@ 9y S
% Q;JJU'I ap oY
eyy + \

B. Atienza Vivancos W. Sekretaruk

Decision electronically authenticated

