BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN

PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-1 To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 19 March 2019
Case Number: T 0518/14 - 3.5.06
Application Number: 05111731.5
Publication Number: 1669854
IPC: GO6F9/445
Language of the proceedings: EN

Title of invention:
Inter-process interference elimination

Applicant:
Microsoft Technology Licensing, LLC

Headword:
Constructing a process/MICROSOFT

Relevant legal provisions:
EPC 1973 Art. 84

Keyword:
Claims - clarity (no)

Decisions cited:

EPA Form 3030 This datasheet is not p(lirt of thle Decision..
It can be changed at any time and without notice.

Catchword:

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

9

Eurcpiisches
Fatentamt

Eurcpean
Patent Office

Qffice eureplen
des brevets

Case Number:

Appellant:

BeSChwerdekam mern Boards of Appeal of the

European Patent Office
Richard-Reitzner-Allee 8

Boards of Appeal 85540 Haar

GERMANY

Tel. +49 (0)89 2399-0
Chambres de recours Fax +49 (0)89 2399-4465

T 0518/14 - 3.5.06

DECISION

of Technical Board of Appeal 3.5.06

(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

of 19 March 2019

Microsoft Technology Licensing, LLC
One Microsoft Way
Redmond, WA 98052 (US)

Grlinecker Patent- und Rechtsanwalte
PartG mbB

LeopoldstraRe 4

80802 Miunchen (DE)

Decision of the Examining Division of the
European Patent Office posted on 30 July 2013
refusing European patent application No.
05111731.5 pursuant to Article 97 (2) EPC.

W. Sekretaruk
M. Miuller
G. Zucka

-1 - T 0518/14

Summary of Facts and Submissions

IT.

ITI.

Iv.

The appeal is against the decision of the examining
division dated 30 July 2013 to refuse European patent
application No. 05 111 731 for lack of clarity,

Article 84 EPC, and insufficiency of disclosure,
Article 83 EPC. Auxiliary requests 3-6 were said to
share the clarity problem with the main request and
were, "thus", not admitted pursuant to Rule 137(3) EPC.

Notice of appeal was filed on 9 September 2013, the
appeal fee being paid on the same day. A statement of
grounds of appeal was filed on 9 December 2013. The
appellant requested that the decision be set aside and
that a patent be granted on the basis of claims
according to a main or six auxiliary requests,

respectively, all as filed with the grounds of appeal.

In an annex to a summons to oral proceedings, the board
informed the appellant of its preliminary opinion that
the claims lacked clarity, Article 84 EPC. Objections

under Article 83 and 56 EPC were also raised.

In response to the summons, with letter dated
18 February 2019, the appellant filed amended claims

according to the main and the six auxiliary requests.

Claim 1 of the main request reads as follows:

"A method of constructing a process (140) from load
modules (124) stored in a computer storage, the process
to be run under an operating system (110), comprising:
creating (320) a typed-code representation of the
process from said load modules, wherein the typed-code
representation describes all of the code and types of

data objects manipulated by the code expressed in said

-2 - T 0518/14

load modules, the load modules being expressed in a
format which describes the code in instructions and the
types of data operated on by those instructions, the
typed-code representation further describing which data
objects are manipulated by each element of code;
generating (326) a processor-executable instruction
stream from the typed-code representation; and
constructing the process, wherein the constructed
process comprises the generated processor-executable

instruction stream."

Claim 1 of auxiliary request 1 differs from that of the
main request in that the generating and constructing

steps are replaced by the following text:

"... updating (322) said typed-code representation;

generating (326) a processor-executable instruction
stream from the typed-code representation, said
processor-executable instruction stream including
processor-executable instructions to perform a self-
examining function; and

constructing the process, wherein the constructed
process comprises the generated processor-executable
instruction stream,

wherein the typed-code representation is updated
before stream generation to add additional processor-
executable instructions to the stream to perform the
self-examining function, and

wherein the constructed process is configured to
examine properties of itself, the generated processor-
executable instruction stream included within the
constructed process being unalterable once the process

is constructed."

Claim 1 of the second auxiliary request reads as

follows:

- 3 - T 0518/14

"A computer system having an operating system (110)
comprising a process construction architecture (100)
for constructing a process (140) from load modules
(124) stored in a computer storage, the process to be
run under said operating system (110), comprising:

a typed-code representation creator (152) for
creating (320) a typed-code representation of the
process from said load modules, wherein the typed-code
representation describes all of the code and types of
data objects manipulated by the code expressed in said
load modules, the load modules being expressed in a
format which describes the code in instructions and the
types of data operated on by those instructions, the
typed-code representation further describing which data
objects are manipulated by each element of code;

a typed-code representation updater (154) for
updating (322) said typed-code representation; and

a typed-code representation converter (156) for
generating (326) a processor-executable instruction
stream from the typed-code representation,

wherein the process construction architecture is
arranged for constructing the process to comprise the
generated processor-executable instruction stream, and
wherein the operating system is arranged for fixing the
executable code running in the process when the process
is constructed, wherein once fixed, the process cannot

run new executable code."

Claim 1 of the third auxiliary request reads as

follows:

"A method of constructing a process (140) from load

modules (124) stored in a computer storage, the process

to be run under an operating system (110), comprising:
obtaining a process manifest (200) that provides a

complete list of the contents ultimately needed to

- 4 - T 0518/14

construct the yet-to-be-constructed process, said
process manifest including content definitions defining
load modules and a code generator external to the
process manifest;
creating (320) a typed-code representation of the
process from a first set of one or more load modules
specified by the process manifest, wherein the typed-
code representation describes all of the code and types
of data objects manipulated by the code expressed in
said load modules, the load modules being expressed in
a format which describes the code in instructions and
the types of data operated on by those instructions,
the typed-code representation further describing which
data objects are manipulated by each element of code;
updating (322) said typed-code representation via a
second set of one or more load modules specified by the
process manifest, wherein the updating comprises:
inserting additional checks to contents and size
of data structures, to verify the integrity of process
execution;
adding new types to the created typed-code
representation; or
adding new functions for existing types to the
created typed-code representation;
generating (326) a processor-executable instruction
stream from the typed-code representation using the
code generator defined in the process manifest; and
constructing the process, wherein the constructed
process comprises the generated processor-executable

instruction stream.."

Claim 1 of the fourth auxiliary request differs from
that of the third auxiliary request in that the

updating step reads as follows:

VI.

- 5 - T 0518/14

"... updating (322) said typed-code representation by
repeatedly invoking a second set of one or more load
modules specified by the process manifest until no
further updates are required, wherein the updating

"w

comprises:

Claim 1 of the fifth auxiliary request differs from
that of the third auxiliary request in that the
following optimizing step is inserted before the
generating step:

" optimizing (324) the typed-code representation on
a process-global basis, including fixing the set of
types and converting all code and all type information

"

into a unified typed-code representation;

Claim 1 of the sixth auxiliary request differs from
that of the fifth auxiliary request in that the
optimizing step reads as follows:

" optimizing (324) the typed-code representation,
including process—-global optimization and cross-process
optimization, the cross-process optimization being an
optimization across multiple communicating processes
and comprising making complementary modifications to
the communicating processes such as removing marshaling
code for the marshaling and unmarshaling of data

objects; ..."

Oral proceedings were held on 19 March 2019. At their

end, the chairman announced the decision of the board.

- 6 - T 0518/14

Reasons for the Decision

The invention

1. The application relates to the dynamic construction and
optimization of "operating-system processes", which are
also simply called "processes". The process
construction is carried out by a software component
called the "process constructor" comprising several
optional modules (see figure 1, no. 100; paragraph 30;
all references herein being to the application as
originally filed) which operate in sequence (see
paragraph 95 and figure 3). For the present case, the
following modules are of particular relevance: The
"process manifest composer" 150 and the "typed code
representation creator" 152 and "updater" 154, and the

typed-code representation converter 158.

1.1 Process construction according to the invention starts
from a "program manifest", which identifies the program
constituent components, so-called "extending
components" and external interfaces comprising type
information (see figure 1, nos. 142 and 140; figure 2;
paragraphs 31 and 32; figure 3, no. 312; paragraph 93).
From the program manifest and the "load modules" (e.g.
DLLs) "of the named constituent components", a "typed-
code representation" is created (see paragraphs 7
and 38 et seq.), i.e. a program formulated in an "In-
termediate Language (IL) that describes all of the code
and types of data objects manipulated by the code" (see
paragraph 39). It is stated that the IL is "a
constrained format that enables analyses" - which in
general are disclosed as being difficult (see
paragraph 23). The IL could be MSIL ("Microsoft

-7 - T 0518/14

Intermediate Language"), but also Java Byte Code or

typed assembly language (see paragraph 40).

Next, the typed-code representation is "updated" (or
"extended" or "manipulated") on the basis of the
extending components of the program manifest (see

paragraph 47 et seqg.).

Then the typed-code representation is "optimized" (see
paragraph 53 et seqg.) using for instance "constant
propagation, code folding, dead code elimination,
function inlining and partial function inlining,
partial evaluation, and function specialization”™ (see
paragraphs 55, 59 and 60). The typed-code representa-
tion is said to enable "cross-process optimization"
(paragraph 58). After the update, additional "process-
global" analyses may be carried out, for instance "data
flow analysis, abstract interpretation" or "model
checking" (see paragraphs 61-62). None of these

optimizations or analyses are claimed.

After that, the typed-code presentation is "converted"
into a "processor-executable instruction stream" (see
paragraphs 64 et seqg.), inter-process "interferences"
are eliminated (see paragraphs 67 et seqg. and
paragraph 98 et seqg.), and a "fixed identity" is
created for each process as "a function of the typed-
code representation contained within the process"; the
skilled person would understand this as some sort of

hash of the process code; see paragraph 78 et seqg.).

Once constructed, it is stated that the process is
"unalterable" (see paragraph 15) after having been
"fixed" or "sealed" (see paragraphs 26 and 90). It is
stated that "By sealing the process at creation time,

the operating system can provide the process a high

- 8 - T 0518/14

degree of confidence that it can hide sensitive
information [...] from hostile parties" (see again

paragraph 90).

Main request

2. Claim 1 does not define format or content of the load
modules or the process instruction stream, even though
both must be assumed to contain some sort of object
code. It specifies the load modules to be "expressed in
a format which describes the code in instructions and
the types of data operated on by those instructions™.
From the load modules, a "typed-code representation of
the process" is created which "describes all of the
code and types of data objects manipulated by the code

expressed in said load modules™.

2.1 Claim 1 does not define how the typed-code

representation is created from the load modules.

2.2 On the one hand, claim 1 uses a different term than
"typed-code representation" for the content of the load
modules ("a format which") and slightly different words
for explaining both: The typed-code representation is

said to describe "all of the code and types of data

objects manipulated by the code expressed", the load

module format to describe "the code in instructions and

the types of data operated on by those instructions"”

(emphasis by the board). In the board's judgment, the
skilled person would interpret this difference in

language as a suggestion that the formats in question
are different and that the creating step goes beyond

merely combining the content of the load modules.

-9 - T 0518/14

On the other hand, the claims do not expressly state
whether the "typed-code representation of the process"
is any different from the combination of the content of
the load modules, let alone how. The difference in
terminology aside, the claim language does not exclude
the possibility that the load modules already contain a

"typed-code representation" of a part of the process.

The creation of the typed-code representation of the
process - and the typed-code representation itself -
are central features of claim 1 of the main request,
which cover half of the claim language. The fact that
claim 1 leaves open whether the creating step differs
from a plain combination (e.g. concatenation) of the
load module content - and, if so, in what way - renders
claim 1 unclear, Article 84 EPC 1973.

It adds to that lack of clarity that the claim leaves
open whether the type information in the typed-code
representation is used for generating the processor-

executable instruction stream and in what way.

The appellant argued that the board's objections do not
establish a lack of clarity but merely indicate that

the claim language is very broad.

The board however opines that a claim is unclear if it
cannot be determined whether one of its central
features limits the scope of the claim - and how - or

is, on a broad reading, virtually redundant.

The board therefore concludes that claim 1 of the main
request lacks clarity, Article 84 EPC 1973.

- 10 - T 0518/14

Auxiliary requests

General

Claim 1 of the auxiliary requests shares the step of
creating a typed-code representation with claim 1 of

the main request.

It adds further steps of modifying the typed-code
representation by "updating" it by adding instructions
for performing "self-examining functions" or for
verifying the "integrity of process execution" or of
new types or new functions for existing types. None of
these additions can overcome the mentioned lack of
clarity of claim 1 of the main request, as none defines
the typed-code representation as opposed to the format
of the load modules, or its creation or its use in

generating the processor-executable instruction stream.

The board therefore considers that also claim 1 of the
auxiliary requests lacks clarity for the same reason as

claim 1 of the main request, Article 84 EPC 1973.
remark
In the annex to its summons, the board raised

additional clarity objections against a number of other

features of the claimed invention, such as "self-exami-

ning function" (auxiliary request 1),

"unalterable" (auxiliary request 1), "fixing" and being
unable to run ("cannot run", auxiliary request 2) or
"process manifest" (auxiliary request 3). During the

oral proceedings, it was discussed how these features -
and the ones added to claim 1 of auxiliary requests 3-6
- had to be construed and whether they had to be

considered unclear themselves. However, in view of the
above, it need not be decided whether these features -

or which of them - are unclear, too, or merely broad as

the appellant argued.

T 0518/14

It need also not be decided

whether, as also suggested in the summons, the claims

on the broadest possible interpretation (which might

find, for instance, the creating step to be essentially

non-limiting) would lack inventive step over common

knowledge in art on code generation.

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar:
0\\\N e l;? ek 6/7)
QD e ovRISeen Py, 7%
%) A %, <
N /’>/“p 2
»* x
Le %
2 s
S g3
© %, 2%
Gy SR
o %0, ap 2B 5O
eyg +

M. Schalow

Decision electronically authenticated

The

W.

Chairman:

Sekretaruk

