BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-1 To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 5 November 2019
Case Number: T 2296/13 - 3.5.06
Application Number: 11193638.1
Publication Number: 2515250
IPC: GO6F21/00
Language of the proceedings: EN

Title of invention:
System and method for detection of complex malware

Applicant:
Kaspersky Lab, ZAO

Headword:
Detection of complex malware/KASPERSKY

Relevant legal provisions:
EPC Art. 56

Keyword:
Inventive step - (no)

Decisions cited:

EPA Form 3030 This datasheet is not p(lirt of thle Decision..
It can be changed at any time and without notice.

Catchword:

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

9

Boards of Appeal of the
E.:;f‘ﬁ':;;::'" BeSChwe rdekam mern European Patent Office
European Richard-Reitzner-Allee 8
Patent Office Boards of Appeal 85540 Haar
Qffice eureplen GERMANY
des brevets Tel. +49 (0)89 2399-0
Chambres de recours Fax +49 (0)89 2399-4465

Case Number: T 2296/13 - 3

Appellant:

.5.06

DECISION

of Technical Board of Appeal 3.5.06

(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

M. Miuller
A. Teale
B. Miller

of 5 November 2019

Kaspersky Lab, ZAO
39A/3 Leningradskoe Shosse
Moscow 125212 (RU)

Sloboshanin, Sergej

V. Finer, Ebbinghaus, Finck, Hano
Mariahilfplatz 3

81541 Miunchen (DE)

Decision of the Examining Division of the
European Patent Office posted on 26 July 2013
refusing European patent application No.
11193638.1 pursuant to Article 97 (2) EPC.

-1 - T 2296/13

Summary of Facts and Submissions

IT.

ITI.

Iv.

The appeal is against the decision, dispatched with
reasons on 26 July 2013, to refuse European patent
application No. 11 193 638.1 on the basis that the
subject-matter of the independent claims lacked

inventive step, Article 56 EPC, in view of the document

Dl: US 2008/0066179 Al

and that claims 7 and 14 were unclear, Article 84 EPC.

The following document was mentioned in the European
Search Report but not relied upon in the reasons for

the decision:

D3: EP 2 219 130 Al.

A notice of appeal and the appeal fee were received on
19 September 2013, the appellant requesting that the
decision be set aside and that a patent be granted
based on the documents on file. Oral proceedings were

requested as an auxiliary measure.

With a statement of grounds of appeal, dated and
received on 28 October 2013, the appellant filed claims
according to a main and an auxiliary request. The
appellant requested that a patent be granted on the
basis of the claims according to said main and
auxiliary requests and the description and drawings on
file.

In an annex to a summons to oral proceedings the board
set out its preliminary opinion that the claims of both
requests overcame the clarity objection in the decision

and were sufficiently clear for the assessment of

VI.

VIT.

-2 - T 2296/13

inventive step. The subject-matter of claims 1 and 8 of
the main request appeared to lack inventive step,
Article 56 EPC, in view of Dl1. The subject-matter of
claims 1 and 8 of the auxiliary request appeared to
lack inventive step, Article 56 EPC, in view of the

combination of D1 and D3.

With a response, received on 4 October 2019, the
appellant submitted amended pages of the description,

but did not amend the claims.

At the oral proceedings, held on 5 November 2019, the
appellant filed amended claims according to a second
auxiliary request and requested that the decision under
appeal be set aside and that a patent be granted in the

following version:

Claims:

- No. 1 to 14 according to the main request, filed with
the letter of 28 October 2013, or

- No. 1 to 14 according to the first auxiliary request,
filed as auxiliary request with the letter of

28 October 2013, or

- No. 1 to 12 according to the second auxiliary
request, filed during the oral proceedings of

5 November 2019.

Description (for all requests):

- Substitute pages 1 and 2, filed with the letter of
4 October 2019;

- substitute page 13, filed with the letter of

1 June 2012;

- pages 3 to 12, as originally filed.

VIIT.

IX.

- 3 - T 2296/13

Drawings (for all requests):
Sheets 1/5 to 5/5 with figures 1 to 4, as originally
filed.

At the end of the oral proceedings the board announced

its decision.

Claim 1 of the main request reads as follows:

"A method for detection of computer malware, the method
comprising: monitoring execution of processes or
threads (201, 202) of one or more software objects
(101); determining if the one or more objects (101) are
trusted objects or non-trusted objects; creating for
each non-trusted object a separate object context (203,
204); storing in a plurality of separate object
contexts (203, 204) events of execution of the
monitored processes or threads (201, 202) of each non-
trusted object; determining if the processes or threads
(201, 202), whose events of execution are stored in
separate object contexts (203, 204), are related to
each other, wherein processes are related when a
process initiates another process, a process creates a
new object from which a new process is initiated, or a
process embeds a thread in another process; creating
for two or more related processes or threads (201, 202)
a new separate common context (205); merging events
stored in the separate object contexts (203, 204) of
the two or more related processes or threads (201, 202)
into the separate common context (205); independently
analyzing events of the processes or threads (201, 202)
stored in each of the plurality of separate object
contexts (203, 204) using malware behavior rules (107)
to identify one or more malicious software objects
having malicious behavior patterns; and independently

analyzing merged events of the related processes or

XT.

- 4 - T 2296/13

threads (201, 202) stored in the separate common
context (205) using malware behavior rules (107) to
identify one or more malicious software objects having

complex malicious behavior patterns.”

Claim 1 of the first auxiliary request differs from
that of the main request in the addition of the

following passages:

"when a monitored process or thread terminates,
discontinuing monitoring said process or thread and
deleting a separate object context (203, 204)

associated with said process or thread;" and

[independently analyzing merged events] "involving a
plurality of related processes or threads even when one
of the plurality of related processes or threads has
terminated and a separate object context of said

terminated process or thread was deleted".

Claim 1 of the second auxiliary request differs from
that of the first auxiliary request in the addition,
after the expression "non-trusted objects" (line 3), of

the following expression:

", by computing digital signatures of the objects and
checking if the digital signatures are associated with
a trusted object; and discontinuing monitoring of one

or more processes or threads of a trusted object".

Reasons for the Decision

The admissibility of the appeal

The appeal fulfills the admissibility requirements
under the EPC.

- 5 - T 2296/13

A summary of the invention

The invention relates to protecting computers from
complex malware, also termed "multi-component" malware,
consisting of several components performing actions
which, taken individually, appear innocuous, but which,
in concert with others, damage the computer. For
instance, a first component may perform actions with
files, a second component may modify the system
registry and a third component may perform networking

functions; see page 1, lines 21 to 27.

When an object (101), for instance an executable file,
is launched on the protected computer, it creates a
process; see figure 1 and sentence bridging pages 3 and
4. The process has a virtual address space accessed by
a plurality of threads, and each process may be
associated with one or more objects. If a process or
thread performs a malicious action, then the object
that launched that process or thread is also treated as

malicious; see page 4, lines 6 to 8.

The invention monitors the execution of the processes
or threads of an object by storing execution events in
a separate "object context". Malware behaviour rules
are used to separately analyse the execution events in
each object context to identify malicious objects, for
instance identifying objects which attempt to modify
the system registry or to create or modify executable

files; see page 5, lines 16 to 19.

The system also determines whether objects are related
to each other, for instance by detecting whether a
parent-child relationship exists between two objects or

their processes; see page 6, lines 1 to 8. If so, their

- 6 - T 2296/13

contexts are merged into a "common context"; see figure
2 and figure 3A; step 315, and the paragraph bridging
pages 5 and 6. From then on, events for each object
context are also added to the common context. The
system analyses events stored in the common context
using malware behaviour rules to identify malicious
objects with complex behaviour; see page 2, lines 2 to

16, and the paragraph bridging pages 6 and 7.

The features added to claim 1 according to the first
auxiliary request are based on page 7, line 30, to page
8, line 7, and concern identifying malicious objects by
means of a common context even after the individual
processes have terminated and the separate object

contexts have been deleted.

The features added to claim 1 in the second auxiliary
request, disclosed on page 4, lines 14 to 21, concern
ceasing to monitor an object if it is identified as
trustworthy by computing a digital signature for the
object and checking whether this signature is in a list
of signatures of trusted objects; see figure 1; 109 and
figure 3; 310. An object is no longer monitored if it

is listed as trustworthy.

Clarity, Article 84 EPC

According to the appealed decision, then claims 7 and
14 were inconsistent with claims 1 and 8, respectively,
in making continued monitoring of trusted objects
conditional. This objection has been overcome by
changing the dependencies of claims 7 and 14 to 3 and
10, respectively, in the main and first auxiliary
requests, and by making claims 6 and 12 dependent on
claims 1 and 7, respectively, in the second auxiliary

request.

1.

1.

-7 - T 2296/13

Claim 1 of all three requests is therefore sufficiently
clear for the purposes of assessing inventive step.
Whether all requirements of Article 84 EPC are
fulfilled need not be decided.

The prior art on file

Document D1

The appealed decision assessed inventive step starting
from D1, which relates to an antivirus protection
system for computers; see title and figure 1. A
"Process Behavior-Evaluating Unit" identifies the
programs in the computer and classifies them as
"normal" or "suspect". "Normal" programs are, for
instance, those known to the "Program-Behavior
Knowledge Base", whilst "suspect" programs include

those of unknown origin; see [9, 89].

A program monitoring unit monitors and records the
behaviour of programs. The actions which are monitored
are those which may affect computer safety, namely file
operations, network operations, creation of processes
or threads, registry operations and injecting threads;
see [13]. "Dangerous actions" are those monitored
actions which may threaten a computer's safety and are
rarely executed by normal programs but often by viruses
or Trojans, for instance modifying a program file,
promoting itself to a higher running layer (e.g.
application to system) or calling the shell program;
see [15, 95].

A correlation analysing unit creates a "correlative
tree", comprising a "process tree" (see figure 2) and a

"file tree" (see figure 3), and performs a correlation

1.

1.

1.

1.

- 8 - T 2296/13

analysis of the behaviour of the programs using the
correlative tree. Each node of the process tree stores
the actions/behaviour of a running process, the parent
node of each node corresponding to its parent process;
see [19-20, 23 and 98]. Each node of the tree file
represents a program, the parent node of each node

corresponding to its creator.

The system also comprises a virus-identifying knowledge
base (see [10, 109, 111, 115]) comprising a program-
behaviour knowledge base and a database of attack-
identifying rules; see [27-49, 116-117 and 131-151].
The knowledge base contains a list of programs known to

be "normal"; see [10].

A virus-identifying unit compares captured program
behaviour with information in the virus-identifying
knowledge base to determine whether a program is a

virus program; see [152].

As shown in figure 5, the "dangerous" actions executed
by a known program are compared to legal actions or
behaviours in the program behaviour knowledge base to
determine whether the program has been attacked. If so,
the program is terminated; see [61]. As shown in figure
6, the "dangerous" actions executed by an unknown
program are compared to rules stored in the database of
attack-identifying rules in the virus-identifying
knowledge base to determine whether the program is

harmful. If so, the program is terminated; see [62-63].

Hence, in the terms of claim 1 of the main request, D1
discloses a method for detection of computer malware,
the method comprising: monitoring execution of

processes or threads of one or more software objects;

-9 - T 2296/13

determining if the one or more objects are trusted
objects ("normal"/"known") or non-trusted objects
("suspect"/"unknown"); creating for each non-trusted
object (node in process tree) a separate object
context; storing in a plurality of separate object
contexts events of execution of the monitored processes
or threads of each non-trusted object (see [98]);
determining if the processes or threads, whose events
of execution are stored in separate object contexts,
are related to each other, wherein processes are
related when a process initiates another process
(implicit in the structure of the process tree in
figure 2), a process creates a new object from which a
new process is initiated, or a process embeds a thread
in another process and independently analyzing events
of the processes or threads (virus-identifying unit)
stored in each of the plurality of separate object
contexts using malware behavior rules (attack-
identifying rules; [116]) to identify one or more
malicious software objects having malicious behavior

patterns.

Document D3

D3 discusses malware detection based on correlating the
behaviour of several processes. Paragraph [8] mentions
a complex malware attack ("Backdoor.GPigeon") involving
three processes, the first (A.exe) having terminated
before the "infringing" action occurs. Processes are
linked in a "process set" by the fact that one launches
another; see [43]. The process set allows events to be
more effectively correlated to detect malicious

behaviour; see [81].

1.

- 10 - T 2296/13

Inventive step, Article 56 EPC

The main request

Present claim 1 is the same as that in the decision,
according to which the subject-matter of claim 1

differed from the disclosure of D1 in that:

1. [the method] stored in separate object contexts
events of execution of monitored processes or

threads only for non-trusted objects and

2. the common context was a new context separated
from the object contexts of the two or more

related processes or threads.

Since the two difference features were unrelated and
lacked any synergistic effect, the examining division
considered their contributions to inventive step
separately. The first difference was obvious because D1
hinted at only recording execution events for the non-
trusted objects; see [9-10]. D1 stated that suspect
and/or unknown programs potentially required
monitoring, thus prompting a skilled person to avoid
storing execution events of trusted programs. As to the
second difference, the creation of a common context as
a separate entity from the object contexts was an
obvious design choice having the same technical effect
as the method of D1, namely analysing the correlation

of programs and/or the behaviours of programs.

In contrast to the appealed decision, the board does
not construe claim 1 as excluding objects being created
for trusted objects. On the contrary, claim 1 merely
requires that objects be created for non-trusted

objects. Hence the board does not agree with the

1.

1.

- 11 - T 2296/13

appealed decision (see point 3.2) that difference "1"
exists. The appellant argued (see response of

4 October 2019, point 3) that claim 1 only positively
recited the creation of separate object contexts for
non-trusted objects and, construing claim 1 in the
context of the underlying application, in particular
figure 3A (see decision 310) and page 10, lines 7 to
10, in which a context was only generated (step 313) if
an object was not trusted; see also page 5, line 26, to
page 6, line 15. The board disagrees that claim 1 must
be construed narrowly according to the cited
embodiments, since claim 1 as originally filed was also
broader than that, stating that execution events of
monitored processes or threads "of each non-trusted
object" are stored in a plurality of separate object

contexts.

A claim which leaves out an option cannot, as a rule,
be construed as requiring that the feature not be
present, even if the feature was absent from the main
(or only) embodiment, unless the absence of that
feature is directly and unambiguously derivable from

the original application.

In the present case, the board considers that it does
not follow from the claim context that trusted objects
not be monitored. Moreover, monitoring trusted objects
is not unreasonable in the present case. Even though
separate monitoring of a trusted object may appear
redundant, it would be entirely plausible to analyse a
trusted object in the context of related processes
because even a trusted object could, in principle, form
part of complex malware according to the definition in

the application (see page 1, lines 24-27).

1.

1.

1.

- 12 - T 2296/13

It is common ground between the board and the appellant
that the subject-matter of claim 1 also differs from
the disclosure of D1 in that:

3. events associated with related processes that are
stored in the object context and in the common
context as merged events are each analysed

independently from each other.

According to the appellant, features "2" and "3" had
the synergistic effect that complex malicious behaviour
involving a plurality of related processes could still
be detected, even if some particular processes of the
plurality of related processes had "died", understood
by the board to mean that the relevant separate object
contexts had been deleted, since the event information
associated with the related processes persisted in the
common context; see original description, page 8, lines
1 to 7. As no evidence has been produced for such a
synergistic effect, and the board can see no reason why
such an effect would occur, the board finds that no

such synergistic effect exists.

It is common ground between the board and the appellant
that the subject-matter of claim 1 also differs from

the disclosure of D1 in the steps of:

a. creating for two or more related processes or
threads a new separate common context and merging
events stored in the separate object contexts of
the two or more related processes or threads into

the separate common context and

b. independently analyzing merged events of the

related processes or threads stored in the

separate common context using malware behavior

1.

1.

- 13 - T 2296/13

rules to identify one or more malicious software
objects having complex malicious behavior

patterns.

It is also common ground that features "a" and "b" are
related to each other; the separate common context of
"b" is defined in "a", making "a" a necessary precursor

to "b".

In the oral proceedings it was common ground between
the board and the appellant that the objective
technical problem starting from D1 was to extend the
malware detection system known from D1 to also cover
complex malware, meaning multi-component malware that

could not be detected by signature recognition.

The appellant has disputed the conclusion in the
decision (see section 3.4) that the creation of a
common context as a separate entity from the object
context (difference feature "a") was an obvious measure
to achieve the technical effect known from D1, namely
analysing the correlation of programs and/or the
behaviour of programs. Firstly, the invention used a
different data structure for organizing process events
to the process tree structure used in D1; see [17-21].
Secondly, by storing events associated with related
processes in two different types of context, the
invention could perform a complex malware detection
using the remaining running processes, even after the
events associated with terminated processes had been
deleted, since the events associated with the

terminated processes persisted in the common context.

Regarding the differences in data structure between the
invention and D1, the board notes that, other than

specifying that events are stored in object contexts

5.1.10

5.1.11

- 14 - T 2296/13

and common contexts, claim 1 does not limit the data
structure used to store events. Hence the object
contexts set out in claim 1 cover the nodes of the
process tree known from D1, since a node could be
considered as an object context comprising references
to "parents" and "children" in the tree structure. The
board appreciates that the process tree of D1 is not
suited to storing sets of object contexts - i.e. nodes
- in separate data structures. If such sets were to
correspond to paths or sub-trees in the process tree,
then creating a separate data structure for the set
would result in objects lacking a natural "place" in
the process tree. A data structure combining nodes
spread over the tree would likewise not have a natural
place in the tree structure. However, the process tree
of D1 does not discourage the skilled person from
creating common object contexts as data structures
separate from the process tree, a matter of usual

design for the skilled person.

On the question of events associated with a terminated
process persisting in the common context and being used
to detect complex malware, the board notes that the
appellant's argument is based on the paragraph bridging
pages 7 and 8 of the description, referring to a
complex malware attack starting with a first process
embedding a thread in an existing process and then
terminating. As claim 1 is not limited to object
contexts being deleted, the board is not persuaded that

this advantage always occurs.

D3 shows that it was known at the priority date to
detect complex (multi-component) malware threats by
monitoring the behaviour of groups of objects which,
although individually innocuous, could in concert pose

a complex malware threat.

- 15 - T 2296/13

5.1.12 1In the oral proceedings the board put it to the
appellant that the skilled person solving the above
problem could form common contexts to collect
information on possible complex malware by either
referring to the nodes in the correlative tree known
from D1 (see [17 to 21]) for storing information on
single software objects or by copying information from
said nodes into a newly created common object. As the
latter solution, set out in difference feature "a"
reduced the time required to access the common object
data it would have been a usual matter of design for
the skilled person. The analysis of a common object to
detect complex malware and thus solve the objective
technical problem, set out in difference "b", followed
from feature "a" as a matter of usual design for the

skilled person.

5.1.13 The appellant argued that storing information on events
firstly in separate object contexts and secondly in the
common contexts had the advantage of added flexibility.
The board finds that this flexibility is not a
surprising effect and that it results from one of the
two possible ways of realising common object contexts

starting from DI1.

5.1.14 Hence the board concludes that the subject-matter of
claim 1 of the main request does not involve an

inventive step, Article 56 EPC, starting from DI1.
5.2 The first auxiliary request
5.2.1 Compared to claim 1 of the main request, claim 1 sets

out two additional features, which are not known from

D1, namely:

L2,

L2,

L2,

- 16 - T 2296/13

c. "when a monitored process or thread terminates,
discontinuing monitoring said process or thread
and deleting a separate object context (203, 204)

associated with said process or thread" and

d. [independently analyzing merged events]
"involving a plurality of related processes or
threads even when one of the plurality of related
processes or threads has terminated and a
separate object context of said terminated

process or thread was deleted."

These amendments focus the claims on the embodiment
disclosed in the paragraph bridging pages 7 and 8
referring to a complex malware attack starting with a
first process embedding a thread in an existing process

and then terminating.

The board finds that feature "c" relates to prudent
memory management (otherwise termed "garbage
collection"), a usual matter of design for the skilled
person, in particular in the claimed situation in which
the content of the separate context was copied to the
common context and thus would not be lost for the

analysis of complex malware.

Turning to feature "d", the skilled person starting
from D1 and addressing the objective technical problem,
set out above, would have added feature "d" without
inventive step as part of detecting complex malware
threats.

Consequently the additional features are unable to lend

inventive step, Article 56 EPC, to claim 1.

.3.

.3.

- 17 - T 2296/13

The second auxiliary request

The features added to claim 1 with respect to the

previous request, namely

[determining if objects are trusted or non-trusted]
"by computing digital signatures of the objects and
checking if the digital signatures are associated with
a trusted object; and discontinuing monitoring of one

or more processes or threads of a trusted object"

are based on page 9, lines 22 to 23, and page 10,

second paragraph.

The appellant has argued that the added features reduce
the amount of data which is stored, increasing
efficiency and producing a synergistic effect in

combination with the other difference features.

The board notes that D1 discloses a "Virus-Identifying
Knowledge Base"; see [10] and [108-9]. The skilled
person would understand "Identification”™ in this
context as "signature recognition" and "Virus-
identification" to mean that an object is non-trusted.
The board is also not persuaded that a synergistic
effect accrues regarding memory management, there being
no disclosure to this effect in the original
application. Moreover, even on the assumption that
memory is saved by not monitoring trusted objects,
separately or in combination with other processes, this
comes at the price of not being able to detect complex
malware comprising a trusted component. In general,
this appears to imply a loss of accuracy of complex
malware detection. The significance of discontinuing
monitoring of trusted object cannot in general be

judged. Therefore, the board concludes that

- 18 - T 2296/13

discontinuing monitoring of processes or threads of a

trusted object is a trade-off between detection quality

and the efficient use of system resources, a usual

design choice for the skilled person.

5.3.4 Hence the board finds that the added features are

unable to lend inventive step to claim 1, Article 56

EPC.

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

(ecours
qdes brevegg
[/Padlung auy®

Spieo@ ¥

(4]

0%,
>
0@(9@/) \&"’@&A\s
JQ(ZJJU,, ap 29 %Q
eyy «

I. Aperribay M. Miller

Decision electronically authenticated

