BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-] To Chairmen
(D) [X] No distribution

Datasheet for the decision

of 9 September 2019

Case Number: T 2083/13 - 3.5.06
Application Number: 04257684.3
Publication Number: 1544735
IPC: GO6F9/46, GO6F11/14
Language of the proceedings: EN

Title of invention:

Method and system of accessing a target file in a computer
system with an operating system with file locking implemented
at file-open time

Applicant:
Lenovo (Singapore) Pte. Ltd.

Headword:
Acessing locked files/LENOVO

Relevant legal provisions:
EPC 1973 Art. 56

Keyword:
Inventive step - (no)

Decisions cited:
T 1742/12

EPA Form 3030 This datasheet is not p(lirt of thle Decision..
It can be changed at any time and without notice.

Catchword:

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

9

Case Number:

Appellant:

Boards of Appeal of the
E.:;f‘ﬁ':;;::'" BeSChwe rdekam mern European Patent Office
European Richard-Reitzner-Allee 8
Patent Office Boards of Appeal 85540 Haar
Qffice eureplen GERMANY
des brevets Tel. +49 (0)89 2399-0
Chambres de recours Fax +49 (0)89 2399-4465

T 2083/13 - 3.5.06

DECISION

of Technical Board of Appeal 3.5.06
of 9 September 2019

(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

M. Miuller

Lenovo (Singapore) Pte. Ltd.
7, Changi Business Park Central 1
Singapore 486048 (SG)

Schweiger, Martin

Schweiger & Partners
Intellectual Property Law Firm
Elsenheimer Strasse 1

80687 Miunchen (DE)

Decision of the Examining Division of the
European Patent Office posted on 5 July 2013
refusing European patent application No.
04257684 .3 pursuant to Article 97 (2) EPC.

S. Krischer

A. Jimenez

-1 - T 2083/13

Summary of Facts and Submissions

IT.

ITI.

Iv.

VI.

The appeal is directed against the decision of the
examining division, dated 5 July 2013, to refuse
application No. 04257684.3 for lack of inventive step
(main request and auxiliary request 1) over D1
(US5675725) in combination with D2 (A. Baker, J.
Lozano: "The Windows 2000 Device Driver Book - Second
Edition"™, 2001, Prentice-Hall, XP2526525, ISBN
0-13-020431-5), and for added subject-matter and lack

of clarity of (then) auxiliary request 2.

A notice of appeal was received on 5 September 2013.
The appeal fee was paid on the same day. A statement of
grounds of appeal was received on 26 September 2013.
The main request and auxiliary request 1 were
maintained. A new auxiliary request 2 was filed,

replacing the former one.

In a communication dated 21 March 2019, the rapporteur
raised an objection of lack of inventive step, using an
NT-based Windows operating system as the starting point

for the problem-solution approach.

In a letter dated 21 May 2019, the appellant submitted

its arguments.

In its summons to oral proceedings, the board addressed
these arguments and gave further reasons as to why the

claims lacked an inventive step.

In a letter dated 9 August 2019, the appellant
submitted further arguments and filed auxiliary
request 3, as well as a request to refer the question

to the Enlarged Board of Appeal whether a framework of

VIT.

VIIT.

XIIT.

-2 - T 2083/13

an operating system as such can be considered as being

the closest prior art.

Oral proceedings were held on 9 September 2019, during
which the appellant withdrew its request to refer the
question to the Enlarged Board of Appeal. At their end,

the board announced its decision.

The appellant's final requests were that the decision
be set aside and that a patent be granted on the basis

of the claims according to:

- the main request (subject of the appealed
decision), the originally filed claims;

- auxiliary request 1 (also subject of the appealed
decision), filed with letter of 14 May 2013;

- auxiliary request 2, filed with the grounds of
appeal;

- auxiliary request 3, filed with the letter dated
9 August 2019.

The other application documents are the same as

indicated in the appealed decision.

Claim 1 of auxiliary request 3 reads as follows:

"l. A method of accessing at least one target file in a
computer system with an operating system with file
locking implemented at file-open time, the method
comprising:

obtaining (210) a set of handles that corresponds to
a set of all files that are open in the computer
system;

determining (212) within the kernel of the operating
system a set of file identifiers that corresponds to

the set of handles;

- 3 - T 2083/13

identifying (214) from the set of file identifiers a
file identifier that corresponds to the target file;

sending (216) within the kernel to the file system
driver of the operating system a read request packet
that corresponds to the identified file identifier; and

receiving (218) from the file system driver data
that corresponds to the target file,

wherein the obtaining comprises: issuing (310) an
NtQuerySystemlnformation [sic] to the kernel, wherein
the NtQuerySystemlnformation asks for all information
about each handle in the set of handles; and obtaining
(312) from the kernel an array of
SYSTEM HANDLE INFORMATION for each handle in the set of
handles, wherein the SYSTEM HANDLE INFORMATION
comprises a pointer to a FILE OBJECT, wherein the
FILE OBJECT comprises file identifier information,

wherein the determining (212) comprises: for each
handle in the set of handles, passing (412) a pointer
to the FILE OBJECT corresponding to the each handle to
the kernel,

wherein the determining (212) further comprises: for
the each handle in the set of handles, outputting (422)
from within the kernel a file identifier corresponding
to the passed FILE OBJECT,

wherein the identifying (214) comprises: identifying
(512) the FILE OBJECT corresponding to the identified
file identifier that corresponds to the target file,

wherein the sending comprises: passing (612) the
identified FILE OBJECT to the kernel; and requesting
(614) from the kernel a reading of data from the target
file corresponding to the identified FILE OBJECT via
the read request packet, wherein the read request
packet comprises an Interrupt Request Packet (IRP),

wherein the requesting (614) comprises: generating

(622) within the kernel an IRP corresponding to the

- 4 - T 2083/13

identified FILE OBJECT at a certain offset and a
certain length; and passing (624) the IRP to the file

system driver of the operating system."

In view of the board's decision, the claim text of the
other requests is immaterial, since claim 1 of the
other requests contain considerably fewer features than

that of auxiliary request 3.

Reasons for the Decision

1. Summary of the invention

1.1 The claimed invention relates to a (user level)
computer process reading a part of a file (see original
description, [60] and [34], in particular the last
sentence; figure 2: 218) which is already open (210).
Repeating these reads at different offsets until the
end of the file is reached will yield a full copy of
the file ([64]; not claimed). Whether the file was
opened by said computer process or another one is
specified neither in the claims nor in figure 2.
However, the description ([2] and [4]) outlines an
exemplary situation where a backup program is to save a
file that has already been opened by another process.
In this case, some versions of the Microsoft Windows
operating system prevent the open file from being read
by the backup program (while producing a "sharing
violation" error). According to the grounds of appeal
(page 2, last paragraph), these versions comprise
Windows NT (released in July 1993) and its successors.
The appellant's statement in this regard, that all

versions of Microsoft Windows released after 1993 were

- 5 - T 2083/13

based on Windows NT, is inaccurate. Rather, according
to https://de.wikipedia.org/wiki/Microsoft Windows#DOS-
Linie f%C3%BCr 32-Bit-Rechner there were seven DOS-
based versions of Windows released after 1993,
including Windows 95 and 98. However, the board accepts
that the invention is intended to be used with an NT-
based Windows operating system which provides file

locking at file-open time.

In the following, the abbreviation "NT" is meant to
designate an "NT-based Microsoft Windows operating

system".

The invention uses four programs:

- a [user level] program: e.g. a so-called "bam.exe",
see [34], [53], [64]; figure 2: 210 and 214;
claim 1 (of all requests): e.g. the steps of
obtaining and identifying;

- a "kernel [level] program": e.g. a so-called
"wam.sys", see [34], [53], [60];

- "the file system driver of the operating system":
see [62] and [65]; claim 1: in the steps of sending
and receiving; figure 2: 216 and 218;

- "the kernel of the operating system": see [36] and

[50]; claim 1: step of determining; figure 2: 212.

Data i1s sent several times between the user level
program and the kernel level program ([36], [50], [531,
[60], [61]) in order to retrieve the NT data structure
FILE OBJECT which belongs to the file to be read (i.e.
the target file). This data structure is then passed to
the file system driver (via an NT IRP request), which
obtains the file data and provides it to the user level

program (process).

- 6 - T 2083/13

It is noted that, contrary to the appellant's
allegation (see the grounds of appeal, paragraph
bridging pages 10 and 11), an "Interrupt Request Packet
(IRP)" (see claim 1, last step of requesting, and [61])
does not seem to exist in the NT driver models, but
only an "I/O Request Packet (IRP)" (see D2, page 64,
last paragraph, and e.g. https://en.wikipedia.org/wiki/
I/0 request packet). During the oral proceedings, the
appellant stated that the Interrupt Request Packets are
a subset of the I/0 Request Packets, without however
providing evidence that the term "Interrupt Request
Packet" was used in the art at all, or indicating any
specific characteristics that distinguished Interrupt
Request Packets from I/O Request Packets. Thus, the
board interprets the claimed Interrupt Request Packets

as ordinary I/O Request Packets.

Inventiveness

The board agrees with the decision that the invention
lacks inventive step. However, it is of the opinion
that no document is needed for establishing that. As
the starting point for the problem-solution approach,

an NT-based Windows operating system (NT) is chosen.

In the following, only auxiliary request 3 is
discussed, since it is narrower and more concrete than
the other requests. Therefore, an argument showing lack
of inventive step of this request also applies to the

other requests.

The method as defined by claim 1 reads a part of an
open target file using NT functions. This is not
possible with the usual file reading routine of NT if

the file was opened by another process (which is not

-7 - T 2083/13

specified in the claims). The reason is that NT
provides a rather strict file locking mechanism which

forbids access to a file opened by another process.

Thus, the objective technical problem to be solved is
how to read a part of an open (target) file while using
NT.

In this context, it is understood that some sort of
identifier of the target file (e.g. a file name) must

be given.

During the oral proceedings, the appellant argued that
the claimed invention had to be construed as implying
the purpose of accessing the file, namely backup. This
purpose was disclosed in paragraph [4], even though it
related to the background art. The appellant pointed
out that paragraphs [5] to [10] disclosed backup
methods for open files as did two further US patents
(US6415300, US8074069) which the appellant referred to
but did not formally introduce. In contrast, NT did not
specifically relate to backup. Therefore, NT was not a
suitable starting point for the assessment of inventive
step, which should rather start from any of the known

backup methods.

However, the application discloses (see paragraph [4])
that it is important for many applications to read data
from a file opened by a different process. Backup
applications are amongst them, but are mentioned only
as an example. Although other applications are not
specifically identified, at least one comes to mind: in
order to debug a program writing into a file, it might
be important for the debugger to access that file while

it is open. The board concludes that the discussion of

.10

.11

.12

- 8 - T 2083/13

backup methods in the background art section does not
imply that the only purpose of the claimed method is
backup and that, therefore, this purpose is not an

implicit feature of the method.

In passing, it is noted that even if backup was
specified in the claim, this would not disqualify NT as
closest prior art. Firstly, the board takes the view
that the assessment of inventive step can start from
essentially any document (see T 1742/12, section 9).
Secondly, the board considers that providing a reading
method for producing a backup in an NT system is a
realistic objective technical problem, and that the
skilled person addressing this problem would not be
bound to modify the reading method of a known backup
method, but would also assess the possibility of

providing a reading method from scratch.

Finally, the board notes that the appellant itself, in
its letter of 21 May 2019, proposed an objective

technical problem which was not limited to backup.

Thus, the board sticks with the technical problem as

formulated above.

Over NT, the specifically claimed steps for carrying

out the claimed method are all new.

However, in order to solve the technical problem, the
invention uses programs and a data structure intended
for this purpose, such as the existing NT kernel
routine NtQuerySystemInformation (see [36], [50]), the
NT file system driver and the IRP data structure for
the packet-driven I/O ([61]-[64]; see also D2, page 64
last paragraph) .

.13

.14

.15

.16

-9 - T 2083/13

The skilled person, who must be considered
knowledgeable about the details of NT system routines,
would know that the file system driver does not test
whether the accessed file is already open and thus
cannot and does not prohibit reading from open files.
Thus, the skilled person would know that direct access
to the file system driver is useful for solving the

problem posed.

As the file system driver requires the NT data
structure FILE OBJECT to access an open file, the
skilled person would obviously query the existing data
structures in the kernel to retrieve this data.
Likewise, the skilled person would have to obtain and
provide the "offset" and "length" parameters if, and
since, they are required by the file system driver (see
the end of claim 1). Since some kernel data structures
can only be accessed from the kernel space, the skilled
person would program this kernel-specific part in a
kernel level program without exercising any inventive

activity.

Splitting a kernel-related task into a user level
program and a kernel level program is considered by the
decision (section 16) to be a well-known programming
methodology. In its letter dated 21 May 2019 (page 3,
paragraph 3), the appellant challenges this assumption,
and in its grounds of appeal (page 7, third paragraph),
it argues that even if D1 was taken to disclose such
splitting, at least the "specific interaction between
the user level program and the kernel level program as

anticipated by claim 1" was not disclosed in DI1.

The board agrees that the specifically claimed split of

work between the user level and the kernel level is not

.17

.18

.19

.20

- 10 - T 2083/13

disclosed in D1 nor implied by NT. However, since, as
mentioned, some kernel data structure can only be
accessed from the kernel space, the skilled person
would have to program this kernel-specific part in a
kernel level program. The rest can be done in a user
level program that is more easily accessible. This
renders the claimed split between user level and kernel
level programs obvious, irrespective of whether co-
operation between user level and kernel level programs

are, in general, a known programming concept.

In passing, the board also notes that nothing in the
description hints that the application would have
invented the concept of co-operating user level and
kernel level programs, suggesting at least that the

application was relying on this as a known concept.

The appellant states in its letter dated 21 May 2019
(page 3, paragraph 5) that there are several different
ways to access these kernel data structures. For
example, the computer could be rebooted into a preboot

environment in order to access them.

The board disagrees. This is not possible, since these
data structures (as they are disclosed in description
sections [37]-[49]) are held in the main memory (RAM;
during the run-time of the program), and after a reboot
they do not exist anymore. Thus, they cannot be

accessed after reboot.

The appellant further argues (page 3, paragraph 6) that
the development of an NT is very complex wherefore it
is disputed that the splitting is a well-known
programming methodology for NT.

T 2083/13

The board cannot see why the complexity of developing

an operating system should have anything to do with the

way of organising the interaction between user level

functionality and kernel-specific functionality.

in violation of Article 56 EPC.

claim 1 of auxiliary request 3 is not

It follows

that broader claim 1 of each of the other requests is

2.21
2.22 Therefore,
inventive,
not inventive,
Order

either.

For these reasons it is decided that:

The appeal is dismissed.

The Registrar:

I. Aperribay

Decision electronically

(ecours
o des brevets
<z
b :
[/Padlung aui®
Spieo@ ¥

(4]

I\
oQbe
K2
A

&
N
%,
b

authenticated

The

Chairman:

M. Miuller

