BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-1 To Chairmen
(D) [X] No distribution

Datasheet for the decision

of 6 May 2019

Case Number: T 0968/13 - 3.5.06
Application Number: 09701244.7
Publication Number: 2243076
IPC: GO6F9/315, GO6F9/305, GO6F9/318
Language of the proceedings: EN

Title of invention:

ROTATE THEN OPERATE ON SELECTED BITS FACILITY AND INSTRUCTIONS
THEREFORE

Applicant:
International Business Machines Corporation

Headword:
ROTATE THEN OPERATE ON SELECTED BITS/IBM

Relevant legal provisions:
EPC Art. 56

Keyword:
Inventive step - (no)

Decisions cited:

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

Catchword:

This datasheet is not part of the Decision.

EPA Form 3030 It can be changed at any time and without notice.

Boards of Appeal of the
E.:;f‘ﬁ':;;::'" BeSChwe rdekam mern European Patent Office
European Richard-Reitzner-Allee 8
0))) |=sue Boards of Appeal 85540 Haar
Qffice eureplen GERMANY
des brevets Tel. +49 (0)89 2399-0
Chambres de recours Fax +49 (0)89 2399-4465

Case Number: T 0968/13 - 3.5.06

DECISION

of Technical Board of Appeal 3.5.06

Appellant:
(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman M. Miuller
Members: A. Teale
A. Jimenez

of 6 May 2019

International Business Machines Corporation
New Orchard Road
Armonk, NY 10504 (US)

Litherland, David Peter

IBM United Kingdom Limited
Intellectual Property Department
Hursley Park

Winchester, Hampshire S021 2JN (GB)

Decision of the Examining Division of the
European Patent Office posted on 20 November
2012 refusing European patent application No.
09701244 .7 pursuant to Article 97(2) EPC.

-1 - T 0968/13

Summary of Facts and Submissions

IT.

IIT.

Iv.

This is an appeal against the decision, dispatched with
reasons on 20 November 2012, to refuse European patent
application No. 09 701 244.7 on the basis that the
subject-matter of independent claims 1 and 8 did not
involve an inventive step, Article 56 EPC, in view of

the following documents:

Dl: US 2003/0037085 Al and
D2: GB 2 317 469 A.

A notice of appeal and the appeal fee were received on
16 January 2013, the appellant requesting that the

decision be set aside and a patent granted.

With a statement of grounds of appeal, received on

20 March 2013, the appellant submitted a new set of
claims and requested that the decision be set aside and
a patent granted, based on said claims and the
description as amended with the submission dated

29 August 2012.

In an annex to a summons to oral proceedings, the board
expressed doubts as to whether the subject-matter of
claims 1 and 7 involved an inventive step, Article 56

EPC, starting from D1 and applying the teaching of D2.

In a letter received on 25 April 2019 the appellant
stated that it would not attend the oral proceedings
and withdrew its request for oral proceedings (the
appellant had not, in fact, made such a request). No
arguments as to substance or amendments were submitted.

The oral proceedings were then cancelled.

VI.

VII.

-2 - T 0968/13

The application is thus being considered in the

following form:

Description:

pages 1 to 3, 6 to 11, 13 to 39, 41 and 43, as
published as WO 2009/087162 A2,

pages 4, 5, 12 and 40, received on 7 September 2011,
and

page 42, received on 29 August 2012.

Claims: 1 to 7, received with the grounds of appeal on
20 March 2013.

Drawings:
pages 1/17 to 16/17, as published, and
page 17/17, as received on 7 September 2011.

Claim 1 reads as follows:

"l. A method of operating a computer comprising:
fetching a rotate-then-operate instruction in a
program, the rotate-then-operate instruction defined
for a computer architecture, the rotate-then-operate
instruction comprising an opcode field, a first
register field (R2), a second register field (R1l), a

T bit, and a rotate amount field (I5) specifying a
rotate amount, wherein the first register field
specifies one of a plurality of general registers,
wherein the second register field specifies one of the
plurality of general registers; executing the rotate-
then-operate instruction comprising: obtaining a first
operand from a first register specified by the first
register field; rotating the first operand by the
instruction specified rotate amount to produce a
rotated value wherein the rotation effectively shifts

bits towards a higher order position and effectively

- 3 - T 0968/13

shifts bits out of the high order bit position into the
low order bit position; selecting a portion of the
rotated value; obtaining a second operand from a second
register specified by the second register field;
performing a Boolean operation on the selected portion
and corresponding bits of the second operand producing
a result corresponding to the selected portion, the
Boolean operation specified by the rotate-then-operate
instruction; responsive to the T bit being 1, the
execution does not change the second operand of the
second register; responsive to the T bit being O,
saving the result in a second operand portion of the
second operand in the second register, the second
operand portion corresponding to bit positions of the
selected portion, wherein all other bits of the second
register other than the second operand portion are
unchanged in the second register by the saving
operation and continuing to a next instruction for
execution; and setting a condition code, the condition
code indicating the result is any one of zero or not

zero."

The claims also comprise a claim 7 to a computer system

referring to "the method of any preceding claim".

Reasons for the Decision

1. The board has no occasion to deviate from its
preliminary opinion, since the appellant did not file

arguments or amendments in response to the summons.
2. The admissibility of the appeal
In view of the facts set out at points I to III above,

the appeal fulfills the admissibility requirements

under the EPC and is consequently admissible.

- 4 - T 0968/13

Summary of the invention

The invention, illustrated in figure 8, relates to
carrying out a "rotate-then-operate" instruction in a
computer, the instruction having two operands. In the
context of the application, "rotation" refers to
changing the order of the bits of the first operand,
for example the bits ABCD, into a rotated form, such as
BCDA, CDAB or DABC. A portion of the rotated wvalue is
then selected (termed the "selected portion" in claim

1) and used as an operand in the Boolean operation.

The claims are directed to the "rotate-then-operate"
embodiments illustrated in figures 6 and 7; see page
40, line 21, to the end of page 42. Figure 7 shows that
the T-bit is stored in bit 0 of the I3 field; see also
page 41, lines 11 to 14.

The instruction set out in claim 1 comprises an opcode
field (specifying the Boolean operation on said
selected portion and the second operand, such as AND,
OR or XOR), first and second register fields (R1, RZ,
identifying the register holding the second and first
operands, respectively), a T bit (determining whether
the result of the Boolean operation overwrites the
second operand in R1l, but leaves all other bits in R1
unchanged) and a rotate amount field (I5, determining
the number of bits by which the bits of the first
operand are to be rotated). T=0 results in such

overwriting, whilst T=1 results in no change.

In claim 1 a "condition code" is set. The board
understands the condition code to be derived from the

result of the Boolean operation. According to page 41,

1.

-5 - T 0968/13

lines 25 to 27, "As a result of executing the Rotate
Then instruction, condition codes are set as follows:

0 Selected bits zero 1 Selected bits not zero".

The prior art on file

Document D1

The decision assesses inventive step starting from D1;

see point 15.

As shown in figure 1, D1 relates to a field processing
unit (160) for carrying out arithmetic and/or logical
operations, the unit being connected to a register file
(150) comprising a plurality of registers and a
condition code register (170); see [21]. The condition
codes or bits can, for example, be "carry, zero,
negative and overflow bits"; see [21-22] and [39]. They
are derived from the result of the operation performed

by the field processing unit.

The field processing unit comprises an execution unit
(420) for performing operations on operand words
(specified by their register location) and/or
"immediate data" words (contained in the instruction
itself), both comprising a plurality of fields; see
figure 4 and [2-3, 36-45]. The execution unit has
inputs for inter alia operands A and B, a first barrel
shifter (440) for manipulating operand A and a "field
arithmetic logic unit and condition logic™ unit (450)
producing two outputs. The first output can be
manipulated by a second, optional barrel shifter (460)
and written to a register in the register file; see
[41]. The second output is written to the condition
code register. A field specifier selector (470)

indicates a "begin" location to inter alia the first

1.

1.

- 6 - T 0968/13

barrel shifter and an "end" location to a mask
generator (410) which is connected to the "field
arithmetic logic unit and condition logic™ unit (450).
The first barrel shifter shifts the operand by a number
of bits defined by the begin bit position; see [38],

penultimate sentence.

The format of the instructions processed by the
execution unit can vary; see [19]. Figure 2 illustrates
an example of an instruction format, the overall
structure comprising an "opcode" (operation code) (210),
an "operand specifier" (250) and a "field

specifier" (270). Opcodes can specify arithmetic
operations (such as addition and subtraction) and
logical operations (such as AND, XOR, shift left and
rotate left). The operand specifier may specify two
source operands (235, 240), of which the second operand
is also a destination register (230), i.e. the result
overwrites the second operand; see figure 2; [25], last
two sentences. The "field specifier" indicates the
field of the operands, otherwise referred to as the
"bit boundaries", that the processing unit operates
upon, the operation not affecting bits outside the
boundaries; see [26]. Thus the field specifier may
indicate the begin (260) and end (265) bit positions of
the field.

Figure 3A shows an example of a field operation on
operands A and B, the result overwriting operand B; see
[29-31 and 43]. The operation is only to be carried out
on a selected portion of operands A and B, termed
portions X (315) and Y (325) respectively. Portion X of
operand A is at the right-hand end. In other words,
field X in operand A is "right justified". In order
that corresponding bits of portions X and Y align, the
whole of operand A is barrel-shifted to the left, thus

1.

1.

1.

-7 - T 0968/13

moving portion X to align with portion Y. The result Z
(335) overwrites portion Y of operand B. According to
paragraph [40], if the second barrel shifter (445) is
used, it "shifts the result back to the original bit
position when the operand B is right field

Jjustified ..."; see [40].

Instead of shifting operand A to the left to align with
operand B, Dl also mentions using a second barrel
shifter (445) to shift portion Y of operand B to the
right to align with portion X of operand A; see [31,
44]1. In other words, portion Y in operand B is right
justified, like portion X in operand A. Hence DI
discloses barrel shifting both to the right and to the
left.

The board notes that the bit of the condition code in
D1 indicating that the result is zero, for instance
when the bit is "1", also implicitly indicates that the
result is non-zero, in this example when the bit is
"o".

Regarding operand A as the first operand in claim 1 and
operand B as the second operand in claim 1, and the
"BEGIN" wvalue for operand B contained in the begin bit
position (260) of the instruction word as a rotate
amount field, D1 discloses the following features of

claim 1:

A method of operating a computer comprising: fetching a
rotate-then-operate instruction (see figure 2) in a
program (see figure 1; instruction fetch unit 130), the
rotate-then-operate instruction defined for a computer
architecture, the rotate-then-operate instruction
comprising an opcode field (210), a first register
field (235) and a second register field (240), and a

- 8 - T 0968/13

rotate amount field specifying a rotate amount, wherein
the first register field specifies one of a plurality
of general registers and the second register field
specifies one of the plurality of general registers;
executing the rotate-then-operate instruction (see
figure 3A) comprising: obtaining a first operand (A;
310) from a first register specified by the first
register field; rotating the first operand (A) to
produce a rotated value (330), wherein the rotation
effectively shifts bits towards a higher order position
and effectively shifts bits out of the higher order bit
position into the low order bit position; selecting a
portion (X) of the rotated value, obtaining a second
operand (B) from a second register specified by the
second register field; performing a Boolean operation
(see "logical operations (e.g., AND, OR, XOR ..." in
[24]) on the selected portion and corresponding bits of
the second operand (Y) producing a result (Z, 335)
corresponding to the selected portion, the Boolean
operation specified by the rotate-then-operate
instruction (see figure 2; opcode 210); saving the
result in a portion (Z) of the second operand (B) in
the second register, the second operand portion
corresponding to bit positions of the selected portion
(see figure 3A), wherein all other bits of the second
register other than the second operand portion are
unchanged in the second register by the saving
operation (see [26], third sentence) and continuing to
a next instruction for execution; and setting a
condition code (see [21]), the condition code
indicating that the result is any one of zero or not

zero.

L2,

L2,

L2,

-9 - T 0968/13

Document D2

According to the International Preliminary Examination
Report, using a flag in an instruction to inhibit
writing a result back to an operand register, while at
the same time setting condition code bits, was known

from D2. The board agrees.

According to page 1, lines 10 to 16, in the context of
Reduced Instruction Set Computing (RISC), it is
desirable "that those few instructions that are
provided have a great degree of flexibility and
utility. One instruction that is sometimes useful is to
proform [sic] a calculation be [sic] not to store the
result to a working register". The board understands
the latter sentence to mean performing a calculation
but not storing the result in a working register. D2
solves this problem by using a program instruction word
comprising a destination register write disable flag
for selectively disabling writing of a result data word
to the destination register; see sentence bridging
pages 1 and 2. By adding this flag, more data
processing functions can be offered without a
significant increase in the hardware overhead. The
power consumption caused by unwanted register writes is

also avoided; see page 2, lines 2 to 6.

According to page 3, lines 4 to 8, when the destination
register write disable flag is set to disable writing
of a result data word to the destination register, the
result data word is still used to update a condition

code flag comprising a zero result flag.

Figures 1 and 3 illustrate the use of such a program
instruction word in a "Piccolo" coprocessor (4) of a

DSP (Digital Signal Processor). Page 63, lines 20 to

- 10 - T 0968/13

25, discusses the CMP and CMN opcodes which carry out a
subtraction and an addition operation, respectively, in
which condition flags are set but register writing is

disabled. According to claim 8§,

"when said destination register write disable flag does
not disable said writing of said result data word to
said destination register, a subtract operation in
which a first operand is subtracted from a second
operand to yield a subtraction result data word, said
subtraction result data word is written to said
destination register and said at least one condition

code flag, including said zero result flag, is updated;

and when said destination register write disable flag
does disable said writing of said result data word to
said destination register, a compare operation in which
a first operand is subtracted from a second operand to
yield a subtraction result data word, said subtraction
result data word is not written to said destination
register and said at least one condition code flag,

including said zero result flag, is updated.”

Inventive step, Article 56 EPC

The appealed decision

Claims 1 and 8 treated in the decision are the same as

present claims 1 and 7, respectively.

According to the reasons for the decision (see point
16), the subject-matter of claim 1 differed from the
disclosure of D1 in that the "rotate-then-operate”

instruction comprised:

1.

- 11 - T 0968/13

i. a field comprising an explicit value of the
rotation amount (In contrast, D1 implied that
this was calculated from the "field
specifier" (270), containing the begin bit
position (260) and the end bit position (265), in

the instruction).

ii. a bit whose value controlled whether the result

of the operation was committed or not.

These differences were not functionally related, being
neither complementary nor cooperative. Regarding
difference feature "i", providing a rotate amount
directly in the instruction word as an immediate, or
computing it relative to the position of a field of
interest in respect to a standard alignment were well
known alternatives not yielding an unexpected technical
effect. The skilled person would have chosen one of
these alternatives according to considerations such as
increasing the instruction length in order to
accommodate the extra field in the instruction, against
the necessity to execute more instructions in order to
align operands with the reference point. Such choices
would have been made by the person skilled in computer

architectures without resorting to inventive skill.

Regarding difference feature "ii", the apparatus of D1
suffered from the obvious disadvantage of decreased
instruction throughput and wastage of instruction
memory, or register pressure, since, whenever an
operation was performed solely to produce condition
codes, extra instructions were required to reinstate
the former content of the result register, or the
compiler had to allocate or dedicate registers to
accommodate the otherwise unused results of the

operation. D1 taught branching according to condition

1.

L2,

- 12 - T 0968/13

bits generated by the field processing unit. The
skilled person would have attempted to solve the
problem of producing condition codes without losing the
content of the result register and thus have found D2.
D2 disclosed an arithmetic and logic unit controlled by
instructions comprising a control bit which, when set,
inhibited writing of the result to the destination
register, while at the same time allowing the updating
of condition codes including the zero flag; see pages 1
to 3. It would have been obvious to apply the teaching
of D2 to the apparatus of D1 to solve the problem at
hand, this requiring no modification of the field
processing unit, which comprised a context multiplexer
coupled to its output which selected whether the result
of the operation or an unchanged operand was to be
forwarded to the destination register; see paragraph
[0041].

Hence the subject-matter of claim 1 and, for the same
reasons, that of claim 8 (the same as present claim 7),

lacked inventive step.

The grounds of appeal

According to the appellant, D1 (see [24]) discloses
rotate left/right opcodes (210) which, in view of the
field specifier 270 in [26] and the barrel-shifting of
a field of operand A to align it with a field of
operand B before carrying out an operation, is a
"barrel-shift then rotate" instruction (see [38]), in
contrast to the claimed rotation followed by a Boolean

operation, rotation not being a Boolean operation.

In contrast to the "rotate amount field" set out in
claim 1, in D1 the "begin bit position” (see [26], line

9) not only specified the point after which the bits in

L2,

L2,

- 13 - T 0968/13

operand A were to be rotated to align with operand B
(see figure 3A) but also implicitly specified the
number of bits through which that part of operand A was
to be rotated. This meant that operand A had to have
the part to be operated on at the right-hand end, i.e.
portion X in operand A had to be "right justified".

D1 did not disclose a "T" bit, set out in claim 1. In
D1 the condition code depended on the entire result
word (see figure 3A, portions 3, Z, 4), whereas claim 1
specified that the condition code depended on whether
the result of the Boolean operation on the selected
portion of the rotated first operand and corresponding
bits of the second operand portion operated was zero or

non-zero (see figure 8; 806).

According to the appellant, the prior art suffered from
three problems. Firstly the portion of the first
operand to be operated on had to be "right justified",
i.e. at the end. Secondly the solution known from D1
did not allow the result to be discarded once the
condition code had been derived from it. Thirdly the
condition code set out in claim 1 only depended on the
bits operated on, whilst in D1 it depended on the
entire result. The invention solved all three problems
by using the rotate amount field "to allow the portion
of the first operand to be operated on to be in any
position within the first operand”". Hence the same
first operand could be compared to a succession of
second operands, for instance to find matching access-
control bits of a memory page's storage protection key
(PSW) (Program Status Word). In the embodiment of the
invention on page 42, lines 8 to 19, in which in the
course of a RXSBG (rotate then exclusive OR selected
bits) instruction the second operand in register R4 is

rotated by sixteen bits (specified in field I5), bits

L2,

L2,

L2,

- 14 - T 0968/13

56 to 63 are rotated (moved) to bits 40 to 47. Bits 40
to 43 (specified in fields I3 and I4) are then compared
in a Boolean XOR operation with the corresponding bits
40 to 43 of a first operand in register R14 and the
condition code set (0=bits zero, 1l=bits non-zero). In
the example the T-bit equals 1 (see bit 0 of I3 field),
so the result is not written to the second operand.
Using the approach known from D1, bits 56 to 63 of the
second operand would have to be right justified, i.e.
they would have to appear at the end of the second
operand, and the second operand would have to be

reloaded after each comparison.

According to the appellant, D1 did not disclose the

following features set out in the claims:

i. a "rotate then operate" instruction (D1 disclosed

a "barrel-shift-then-operate" instruction);

ii. a rotate field specifying a rotate amount and

iii. a mechanism such as a T bit for determining
whether the result operand is to be updated.

The appellant has stated that feature "iii" is known

from D2, which discloses a destination register write

disable flag and the updating of a condition code flag,

even when said writing is disabled.

The appellant has also argued that neither D1 nor D2
discloses a rotation specified in a rotate amount field
or rotation, as opposed to barrel-shifting, before an

operation.

1.

- 15 - T 0968/13

The board's finding on inventive step

The interpretation of the term "rotation"

Claim 1 sets out the rotation effectively shifting
"bits out of the high order bit position into the low
order bit position", also termed "wrapping", and thus
sets out rotation without data loss, as opposed to
merely shifting bits towards the higher order end and
filling bits at the lower order end with, for instance,
zeros, known as "padding", thereby losing data. The
appellant has drawn a distinction between the claimed
"rotating" and the "barrel-shifting" known from Dl; see
grounds of appeal, points 2.19 to 2.21. The board does
not agree with the appellant on this point. DI
discloses a first and a second, optional barrel shifter
shown in figure 4 (see 440, 445 and [38]) for shifting
bits in operand A or the result either towards or away
from the high order bit position. D1 does not
explicitly explain what happens when bits "drop off the
end" of a data word during said shifting. However D1
does mention that, if the optional second barrel
shifter 455 is used, it "shifts the result back to the
original bit position when the operand B is right field
justified ..."; see [40]. In the board's view this is
only possible if neither the first (440) nor the second
(455) barrel shifter incurs a data loss (i.e. "pads").
Hence, in this case in D1, both barrel shifters must
shift "bits out of the high order bit position into the

low order bit position" and thus "wrap".

The board does not accept the appellant's argument
(grounds, point 2.9) that in D1 the condition code 1is
set depending on the entire result word (portions 3, Z
and 4 in figure 3A). In the board's view, in both the

application and D1 the condition code is derived from

L2,

L2,

- 16 - T 0968/13

only the result portion of the second operand; see DI,
figure 3A; portion Z. According to paragraph [39] of
D1, "The field ALU 450 has a condition logic to
generate the condition codes or condition bits such as
carry, zero, negative, and overflow bits according to
the result of the operation." (Emphasis added by the
board). In this context, the "result" in D1 is portion

Z of operand B; see figure 3A.

The differences between claim 1 and D1

The subject-matter of claim 1 differs from the
disclosure of D1 only in that, responsive to a T bit of
the instruction being 1, the execution does not change
the second operand of the second register and,
responsive to said T bit being 0, carrying out said

saving step.

Consequently the board does not agree with the
appellant that differences "i" and "ii" in the list of
difference features, set out in point 2.17 of the
grounds of appeal, exist. It is however common ground

that difference "iii" in that list exists.

The board agrees with the finding in the appealed
decision that the only difference feature over DIl is
obvious. The skilled person would have recognised that
the method and apparatus known from D1 suffered from
the obvious disadvantage of decreased instruction
throughput and wastage of instruction memory, or
register pressure, caused by unnecessarily writing the
result of the Boolean operation to a register when all
that was needed was to derive condition codes from the
operation result, as set out in point 18 of the
decision. The skilled person would have sought to solve

this problem and thus have found D2. It is common

Order

- 17 - T 0968/13

ground between the appellant and the decision, and the
board agrees, that D2 discloses an arithmetic and logic
unit controlled by instructions comprising a control
bit which, when set, inhibits writing of the result to
the destination register, while at the same time
allowing the updating of condition codes including the
zero flag; see pages 1 to 3. It would consequently have
been obvious for the skilled person to apply the
teaching of D2 to the method and apparatus known from

D1 to solve the problem at hand, thus adding the

difference feature.

Consequently the board finds that the subject-matter of
claim 1 does not involve an inventive step, Article 56

EPC, starting from D1 and applying the teaching of D2.

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:
werdek,
%50\:‘095’\% hen Pi:”’%,
) tF'J(’ ”’a//)/ %
* ¢
N
Lg) Exe:]
=S > =]
o2 m o
] " S3
=] o
0% qg
&% &
&‘/ 9 sa'/‘gl],] ap 6’3\-\‘\’“\;66
“eyy 4
N. Schneider M. Miller

Decision electronically authenticated

