BESCHWERDEKAMMERN
DES EUROPAISCHEN

PATENTAMTS OFFICE

Internal distribution code:

(A) [-] Publication in OJ

(B) [-] To Chairmen and Members
(C) [-] To Chairmen

(D) [X] No distribution

Datasheet for

BOARDS OF APPEAL OF
THE EUROPEAN PATENT

CHAMBRES DE RECOURS
DE L'OFFICE EUROPEEN
DES BREVETS

the decision

of 1 July 2015

Case Number:
Application Number:
Publication Number:

IPC:

Language of the proceedings:

Title of invention:

T 1211/12 3.5.06
05106321.2
1615129

GO06F9/52,
GO6F9/44
EN

GO06F9/54, GO6F9/46,

Implementation of concurrent programs in object-oriented

languages

Applicant:
Microsoft Technology Licensing,

Headword:

LLC

Compiling concurrent object-oriented programs/MICROSOFT

Relevant legal provisions:

EPC 1973 Art. 83, 84
Keyword:
Claims - clarity (no)

Sufficiency of disclosure - (no)

Decisions cited:

Catchword:

This datasheet is not

EPA Form 3030 It can be changed at any

part of the Decision.
time and without notice.

Europilsches Beschwerdekammern gugggggnMPLja'EﬁgtHOffice
0) Friens e Boards of Appeal CERUANY o

ffice européen . -

oot Chambres de recours Fax +49 (0) 89 2399-4465

Case Number: T 1211/12 - 3.5.06

DECISTION
of Technical Board of Appeal 3.5.06
of 1 July 2015

Appellant: Microsoft Technology Licensing, LLC
(Applicant) One Microsoft Way
Redmond, WA 98052 (US)

Representative: Grinecker Patent- und Rechtsanwalte
PartG mbB
LeopoldstraRe 4
80802 Miunchen (DE)

Decision under appeal: Decision of the Examining Division of the
European Patent Office posted on 21 December
2011 refusing European patent application No.
05106321.2 pursuant to Article 97 (2) EPC.

Composition of the Board:

Chairman W. Sekretaruk
Members: M. Miller
S. Krischer

-1 - T 1211/12

Summary of Facts and Submissions

IT.

ITT.

Iv.

The appeal lies against the decision of the examining
division, with written reasons dispatched on 21 Decem-
ber 2011, to refuse European patent application No. 05
106 321.2 for lack of compliance with Articles 83, 84
and 123 (2) EPC. The decision also contains a section
entitled "Obiter Dictum" according to which claim 1 of
the three pending requests lacks an inventive step over
the cited prior art, Article 56 EPC.

An appeal was lodged on 29 February 2012 and the appeal
fee was paid on the same day. A statement of grounds of
appeal was received on 2 May 2012. It was requested
that the decision under appeal be set aside and that a
patent be granted based on the main or either of the
auxiliary requests which were the subject of the

decision.

With its summons to oral proceedings, the board
informed the appellant that, in its preliminary opin-
ion, all three requests did not conform to Article
123(2) EPC and Articles 83 and 84 EPC 1973. Preliminary

observations on inventive step were also made.

In response to the summons, with letter dated

1 June 2015, the appellant filed new auxiliary requests
3-5 each of which was an amended version of the pending
main and auxiliary requests 1 and 2, respectively, and
was intended to address the board's objections under
Article 84 EPC 1973 and Article 123(2) EPC.

Oral proceedings were held on 1 July 2015 as scheduled.
During the oral proceedings the appellant withdrew the
main request and auxiliary requests 1 and 2, which made

the auxiliary request 3 its main request, and requested

VI.

VII.

-2 - T 1211/12

the grant of a patent based on claims 1-13 according to
one of the auxiliary requests labelled "3", "4" or "5"
as filed with the letter dated 1 June 2015, in combi-

nation with the description and the drawings on file.

Claim 1 of auxiliary request "3" reads as follows:

"A computer system employing language extensions in an
object-oriented environment (100) that supports
concurrency to [sic] object-oriented languages, via
message passing to/from services (108) in the object-
oriented environment (100), wherein a service executes
its own algorithmic thread and does not share state
with any code outside the service the system
comprising:

a contract component (104) being defined as
interface declarations for asynchronous message passing
for managing communication between multiple services
(108) simultaneously, the contract component including:

a message component (302) specifying a set of
messages; and

a protocol component (304) specifying allowable
sequences of message exchange;

a component (106) for the multiple services
configured to facilitate the handling of multiple
messages and multiple message targets, the component
comprising:

a compiler component (604) configured to generate a
schedule for the messages in accordance with the set of
messages and the allowable sequences, wherein the
schedule is a runtime object that allows message-
oriented code to wait for more than one message in

parallel."

Claim 1 of auxiliary request "4" reads as follows:

- 3 - T 1211/12

"A computer system employing language extensions in an
object-oriented environment (100) for implementing a
service concurrency model for services (108) in an
object-oriented environment via message passing to/from
services (108) in the object-oriented environment
(100), wherein a service executes its own algorithmic
thread and does not share state with any code outside
the service the system comprising:

a plurality of services (108) in an object-oriented
environment (100);

a contract component (104) being defined as
interface declarations for asynchronous message passing
for managing communication between multiple services
(108) simultaneously, the contract component including:

a message component (302) specifying a set of
messages; and

a protocol component (304) specifying allowable
sequences of message exchange;

whereby said set of messages is usable as an
alphabet of a pattern to establish a formal protocol
definition of a communication protocol;

a component (106) for the multiple services
configured to facilitate the handling of multiple
messages and multiple message targets, the component
comprising:

a compiler component (604) configured to implement a
compilation algorithm to break the source code of the
services into pieces to allow parallel waits to occur,
wherein places in said source code are broken that
could block a current thread of the services thereby
allowing multiple points to wait in parallel or
allowing the threads context to continue with different
computation; and

the compiler component (604) being further
configured to generate a schedule for the messages in

accordance with the set of messages and the allowable

VIIT.

IX.

- 4 - T 1211/12

sequences, wherein the schedule is a runtime object
that allows message-oriented code to wait for more than

one message in parallel."”

Claim 1 of auxiliary request "5" differs from claim 1
of auxiliary request "4" in that the protocol component

is defined as

"... a protocol component (304) identifying an
implementation schedule for the set of messages by

A

specifying allowable sequences if message exchange

and in that the second paragraph in the definition of
the compiler component refers to the "implementation

schedule" and now reads as follows:

"... the compiler component (604) being further
configured to generate a schedule for the messages in
accordance with the set of messages and the
implementation schedule of the contract component,
wherein the schedule is a runtime object that allows
message-oriented code to wait for more than one message

in parallel."

All requests also contain an independent method claim 6
corresponding to the respective independent system

claim 1.

At the end of the oral proceedings, the chairman

announced the decision of the board.

- 5 - T 1211/12

Reasons for the Decision

The invention

1. According to its initial paragraph, the application
relates to "language extensions in an object oriented
environment to support asynchronous programming through
message passing, contracts, and orchestration". The
application explains that shared-memory communication
as used in certain object-oriented frameworks is "one
of the main obstacles to simple support for concurren-
cy
as a solution to incorporate asynchronous message

"

(p. 1, last para. - p. 2, 1lst para.) and proposes

passing in such object-oriented environment (p. 2, 2nd

para.) .

1.1 The proposed solution is based on several "services",
each running in its own thread, which communicate with
each other according to message-based interfaces based
on "contracts" (see e.g. p. 3, lines 19-20). A contract
is defined as "a formal specification of the allowable
sequences of invocation of the members of an inter-
face" (i.e. of a protocol and its messages; see p. 3,
lines 25-26, and p. 26, lines 20-21). Contract declara-
tions in the program code (see e.g. p. 10, lines 7-20)
are, at run-time, represented by non-deterministic fi-

nite state machines (p. 4, lst para.).

1.2 The contracts are said to be enforced at run-time by
"validat[ing] method invocations ... against a contract
specification" (p. 3, line 28 - p. 4, line 3) - presu-

mably producing some sort of error message if a method
call cannot be so validated. Alternatively, it is dis-
closed that contracts may be enforced at compile-time

(see p. 28, lines 4-5, and p. 2, lines 23-24).

- 6 - T 1211/12

1.3 Another aspect of the invention is referred to in the
description as "orchestration", which is said to encom-
pass "the collection of mechanisms for coordinating
communication between concurrent services" (p. 9, lines
5-7; p. 37 £.). An "orchestration component" is dis-
closed comprising what is called a "schedule component"
and a "compiler component" (see fig. 6). The compiler
is said to "[break] the co-routine-based code down into
pieces to allow parallel waits to occur without
blocking thread context" (p. 5, lines 5-7). Elsewhere,
the compiler is disclosed as producing the schedule
component (see original claim 2) as a "runtime object"
- with no "source-code manifestation”" - that is used to
allow message-oriented code to wait for more than one
message in parallel" (p. 37, last para. - p. 38, line
2; p. 40, lines 23-24).

1.4 In an appendix, the application contains a scientific
paper which appears to provide a theoretical basis for
aspects of the present application. The paper refers to
model checking to verify that a "message-passing pro-
gram" conforms to its "contract" and is thus "stuck-
free", in that it "cannot deadlock waiting for messages
that are never sent or send messages that are never re-
ceived" (see section 1, lines 1-4). Contracts appear to
correspond to the ones described in the application
(see Appendix A, fig. 1). The appendix also reports on
a study in which a service implementation was automati-
cally detected not to conform to its contract specifi-

cation in wvarious ways (penult. page).

Clarity, Article 84 EPC 1973

2. The board is of the opinion that the wording of claim 1

of all requests is fundamentally unclear, in particular

as regards the nature and functionality of the claimed

-7 - T 1211/12

"schedule" and how the schedule is generated by the

claimed "compiler".

3. The board first notes that the term "schedule" has no
unique established meaning in the relevant art of con-
current and distributed programming languages, environ-
ments and compilers. This also applies to the term "im-

pPlementation schedule" as used in auxiliary request 5.

3.1 The "schedule" is claimed as being a "runtime object"
(auxiliary request 3, claim 1, penult. line) and dis-
closed as having no "source-code manifestation" (p. 37,
last para.). It is claimed as being generated by a com-
piler "in accordance with" the contract component, in
particular with "the set of messages and the allowable
sequences". This language suggests, in conformity with
the description, that the schedule is a compiler
product meant to aid "enforcement" or "validation" of
contracts (see p. 3, 3rd line from the bottom - p. 4,
line 3).

3.2 The claims do not specify the desired behaviour of the
schedule component at run-time, nor how it is intended
to represent, enforce or validate the contract compo-

nent.

3.2.1 It is noted that a "contract" may be breached by

a) the fact that a message is sent which is not
"allowed" at a certain point in time, after a
certain sequence of messages, or by the fact that

b) none of the possible messages allowed (and

expected) at a particular point in time arrive.

3.2.2 Accordingly, "enforcing" or "validating" a contract can

mean different things.

L2,

L2,

- 8 - T 1211/12

An obvious breach of contract is the sending of a
message which is not allowed at a particular point in
time. If a service receives such a message, an error
message might be produced or an interrupt raised. The
service might then process the message nonetheless (if
it provides the corresponding method) or it may refuse
to process it. In the latter case the sender of the
message might be blocked ("stuck") waiting for a res-
ponse, even though the deviation from the contract was
detected.

Another possible breach of contract is that an expected
or prescribed message is not received by a service so
that the service is blocked waiting for that message,
whether or not this is a response message. In this
case, i1t must be defined when this non-compliance is
said to occur. The description states that even a long
delay of an expected message does not "technically"
constitute a breach of contract (p. 64, lines 7-9) but
that missing messages constitute a violation of the
contract only when the entire schedule is terminated.
The board notes that some services are meant to run
forever. On the assumption that the "schedule" of such
a service never terminates, such a service will, from
this perspective, never exhibit a breach of contract
even when it is blocked ("stuck") waiting for a message

that never arrives.

Moreover, it may be possible that the compliance of
services with a contract can be determined at compile-
time (see description, p. 28, lines 4-5). The board
notes that this may not be generally possible (for
fundamental reasons relating to what is known as the
"halting problem") and that the description gives no
indication as to the circumstances under which compile-

time validation 1is possible and/or meant to be

-9 - T 1211/12

performed. Moreover, everything that has been checked
at compile-time need not be checked at run-time any
more. The skilled person would thus assume that the
runtime object "schedule" only performs checks which

have not already been carried out at compile-time.

Claim 1 of all requests does not specify any of the
above, be it directly as claimed properties of the
schedule or indirectly by way of claimed properties of
the "compiler component". As a consequence, it is
entirely unclear what the schedule component is meant
to do at run-time and thus in what way it is "generated
[...] in accordance with the set of messages and the
allowable sequences" or, as auxiliary request 5 puts
it, "in accordance with the set of message and

implementation schedule of the contract component".

Claim 1 of all requests specifies that "the schedule
component [...] allows message-oriented code to wait

for more than one message in parallel”.

The board considers that this phrase is ambiguous.
Firstly, code comprising multiple threads will
typically have, at any point in time, some threads
which are ready to proceed and other threads which
block while waiting for some message to arrive. The
latter threads wait "in parallel". Secondly, any con-
current object must be prepared to process any message
corresponding to its methods. Hence, any idle
concurrent object providing at least two methods can be
said to be waiting "in parallel". Thirdly, according to
the claims it is the "schedule", generated "in accor-
dance with" the contract component, which "allows [...]
code to wait [...] in parallel"; this appears to

suggest that parallel waiting is only allowed to the

- 10 - T 1211/12

extent that the protocol part of the contract component
specifies it.

The wording of claim 1 of all requests leaves open
which of the three interpretations is the intended one,

and this also renders the claim unclear.

The board further notes that the inventive contribution
which the "parallel wait" feature may possibly make de-
pends significantly on which of these three interpreta-
tions is chosen. As suggested above, the possibility of
threads waiting in parallel appears to be implicit in
any multi-threaded message-based system, the
possibility of objects waiting in parallel appears to
be implicit in any concurrent object-oriented system,
and the possibility for a service to wait in parallel
for only those messages which the contract component
happens to allow appears to follow from the fact that
the specified contract should be "enforced" at run-
time. While in the first two cases no dedicated
compiler support might be needed at all to "allow [...]
waiting in parallel”, in the third case such compiler

support is needed but not claimed.

Auxiliary requests 4 and 5 (penult. para.) refer to a
"compilation algorithm to break the source code of the
services into pieces to allow parallel waits to occur,
wherein places in said source code are broken that
could block a current thread of the services thereby
allowing multiple points to wait in parallel or
allowing the thread context to continue with different

computation".

This wording leaves open how the "pieces" into which
the code is broken are to be determined, whether all
places that could potentially block a thread are

determined, or only some of them and, in this case,

- 11 - T 1211/12

which ones, how the pieces are to be executed
separately, and how they are to cooperate to produce

the overall service.

The board notes in this regard that it is by no means a
trivial task to compile sequential program code so that
its execution can exploit co-routines, concurrency, oOr

even parallelism.

In view of this, the lack of any detail regarding the
compiler and the compilation algorithm concerns a cen-
tral feature of the claimed invention which also

renders the claims unclear.

In its written reply dated 1 June 2015 to the board's
summons to oral proceedings, the appellant did not sub-
stantially address the board's clarity objections rela-
ting to the "schedule", the "compiler", and their rela-
tion as claimed (see points 6.6-6.8 of the summons).
With regard to the board's objection under Article 83
EPC 1973, the appellant only referred to its
submissions in the statement of grounds of appeal
which, however, do not explain how the claimed compiler

was meant to work.

Nor did the appellant refer in the oral proceedings to
any passages in the description which could elucidate
the above clarity and insufficiency problems addressed
by the board.

The appellant argued, however, that the "contract
component" or how the compiler generated the schedule
from the contract component was not central to the
invention and that the contract component could even be
deleted from the claims without affecting their

inventive merit. Rather, the central contribution of

- 12 - T 1211/12

the invention was that the schedule is generated auto-
matically for the services by the compiler, whereas in
the prior art it was necessary for the services to

provide and implement their schedules individually and

separately.

6.3 The board is of the opinion that without the reference
to the contract component "in accordance with" which
the schedule is generated, the meaning of the term

"schedule" becomes even less clear.

6.4 Moreover, the board considers that the appellant's
argument, even if was correct that the central
contribution of the invention concerned the way in
which a schedule was generated rather than what it did,
might be relevant for the inventive step assessment.
However, it does not overcome the clarity objection. In
the board's view, the appellant's argument even
underlines the relevance of the clarity of the term
"schedule", since the argument that the invention
contributes a new way to provide a "schedule" for
services can only be assessed at all if the term

"schedule" is clear.

7. In summary, the board concludes that claim 1 of all re-
quests is unclear at least because claim 1 leaves unde-
fined what the "schedule" is meant to do at run-time,
how it relates to the "contract component" and how the
"compiler" is instrumental in generating the schedule.
Therefore, it does not comply with Article 84 EPC
1973.

Article 83 EPC 1973

8. The board not only considers the claimed compiler to be

unclear, but it is also unable to find in the descrip-

- 13 - T 1211/12

tion any substantial disclosure of how the compiler is
meant to work, in particular in view of its opinion
that the claimed compiler function is all but trivial
even for a person of skill in the art. As already
mentioned, in its letter of 1 June 2015 the appellant
did not address the specific objection of the board in
this regard. Nor did it refer, in oral proceedings, to
passages in the description that it considered to pro-
vide the pertinent disclosure. Therefore, the board has
no reason to deviate from the opinion that it expressed
in the summons that the claimed compiler component is
not disclosed in a manner sufficiently clear and
complete for it to be carried out by a person skilled
in the art. Hence, all three requests do not to conform
with Article 83 EPC 1973 either.

Summary
9. Given their deficiencies under Articles 83 and 84 EPC

1973 as explained above, none of the three requests is

allowable. The appeal must therefore be dismissed.

T 1211/12

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

werdekg
\V aischen p, /7)
Q)Q)‘E’s@woa atg %/770/
N3 % P
* x
g % ®
2 :3
2% 53
e "% s o
[S
0;%0 499}) A\?
® N
S, %oy Y Qb
Q 0, ap)
Weyy & \°

D. Hampe W. Sekretaruk

Decision electronically authenticated

