BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-1 To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 8 March 2018
Case Number: T 2376/11 - 3.5.01
Application Number: 05735535.6
Publication Number: 1745381
IPC: GO6F11/00
Language of the proceedings: EN

Title of invention:

MANAGING PROCESS STATE INFORMATION IN AN OPERATING SYSTEM
ENVIRONMENT

Applicant:
Alcatel-Lucent USA Inc.

Headword:
Process state information / ALACATEL-LUCENT

Relevant legal provisions:
EPC Art. 56

Keyword:
Inventive step - pushing of process state information to the
user space (no - obvious combination of known features)

EPA Form 3030 This datasheet is not p(lirt of thle Decision..
It can be changed at any time and without notice.

9

Eurcpiisches
Fatentamt
Eurcpean
Patent Office

Qffice eureplen
des brevets

Case Number:

Appellant:

Beschwerdekammern
Boards of Appeal

Chambres de recours

Boards of Appeal of the
European Patent Office
Richard-Reitzner-Allee 8
85540 Haar

GERMANY

Tel. +49 (0)89 2399-0
Fax +49 (0)89 2399-4465

T 2376/11 - 3.5.01

DECISION

of Technical Board of Appeal 3.5.01

(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

of 8 March 2018

Alcatel-Lucent USA Inc.
600-700 Mountain Avenue
Murray Hill,

New Jersey 07974 (US)

Novagraaf Technologies

Batiment 02

2, rue Sarah Bernhardt

CS90017

92665 Asnieres-sur-Seine Cedex (FR)

Decision of the Examining Division of the
European Patent Office posted on 24 June 2011
refusing European patent application No.
05735535.6 pursuant to Article 97 (2) EPC.

W. Chandler

N.
P.

Glaser
Schmitz

-1 - T 2376/11

Summary of Facts and Submissions

IT.

ITI.

Iv.

This appeal is against the Examining Division's
decision to refuse the European patent application
05735535.6. The Examining Division was of the view that
the invention lacked an inventive step over a
combination of D1 (US6681348) with common general
knowledge or with D4 (Daniel P. Bovert & Marco Cesati,
Understanding the Linux Kernel, First Edition, October
2000, pp. 1-35, 217-230).

With the statement setting out the grounds of appeal,
dated 18 October 2011, the appellant requested that the
decision under appeal be set aside and that a patent be

granted based on the set of claims filed therewith.

After an initial communication and a reply, the Board
arranged to hold oral proceedings and confirmed its
provisional view in the accompanying communication. In
particular, the Board tended to agree with the
examining division's decision that the claimed

invention did not involve an inventive step.

The appellant informed the Board by letter of 5
February 2018 that he would not be attending oral
proceedings and requested that the Board decide on the
state of the file.

Independent claim 6 according to the main request reads

as follows:

A method for managing process state information in an
operating system environment, wherein local memory
(102) used by an operating system 1is segregated into
kernel space (106) and user space (104), the method

comprising:

VI.

-2 - T 2376/11

executing (200) a first application (110),
identifying (202) a fault in the execution of the first

application; and

in response to identifying a fault in the execution of
the first application, pushing (204) process state
information (122) from the kernel space of the local
memory directly to a core dump application (112) in the

user space of the local memory;

generating a core file (124) in the user space of the
local memory from the process state information that 1is
pushed directly to the user space, wherein the core
file is generated at the user space instead of at the

kernel space,; and

forwarding (133) the core file from the user space of

the local memory to a remote system.

The appellant's arguments can be summarized as

follows

D1 as closest prior art shows a conventional crash or
core dump process. It does not disclose the features of
(a) pushing process state information from the kernel
space of the local memory directly to the user space of
the local memory, (b) a core dump application using the
user space of the local memory and configured to
generate a core file from the [pushed] process state
information, and (c) wherein the core file is generated

at the user space instead of at the kernel space.

These features in combination solve the technical
problem of limited local permanent storage capacity for
storing an initial kernel level crash/core dump file on

the local machine by handling process state information

- 3 - T 2376/11

at the user level instead of at the kernel level. The
invention pushes process information to the user level

and generates the core file at the user level.

Reasons for the Decision

1. The invention concerns a system and method for managing
process state information in an operating environment
when the execution of an application faults and when

process state information is dumped to storage.

2. D1 is considered to be the closest prior art. D1
discloses the generation of mini dump or summary files
which are better suited for transmission over a
communication link for further analysis or for storage
to a portable memory device, column 1, lines 30 to 63,
column 2, lines 52 to 55, column 5, lines 1 to 4, and
column 8, lines 36ff. More importantly, D1 is not
limited to the generation of a (complete) system crash
dump file, but discloses the generation of an
application crash dump file as well, column 8, lines
25ff. Both types of crash dump files are said to be
very big in memory size and it is often impossible to
predict the memory necessary to store it, because the
amount of kernel-mode memory allocated by the operating
system varies. Therefore the problem of (limited)
memory storage is addressed in D1. Furthermore, D1 is
not limited to a kernel crash dump process 26 in kernel
mode and a user mode crash dump process 240 in user
mode, but both processes can be combined, column 10,

lines 21 to 28, to achieve flexibility.

3. Accordingly, D1 discloses a method for managing process
state information in an operating system environment,

wherein local memory used by an operating system is

- 4 - T 2376/11

segregated into kernel space and user space (Dl: Figure
1, items 14 and 16; column 4, lines 29-31), executing a
first application (Dl: Figure 1, item 18; column 4,
lines 31 to 35), identifying a fault in the execution
of the first application (Dl: column 8, lines 30-57),
in response to identifying a fault in the execution of
the first application (Dl: column 8, lines 30-57),
generating a core file in the user space of the local
memory from the process state information (Dl: Figure
7, item 220; column 8, lines 40-50; Figure 8, item 240;
column 8, line 58, to column 9, line 23), forwarding
the core file from the user space of the local memory

to a remote system (Dl: column 2,lines 59-61).

Claim 6 therefore differs from D1 by the following

features

(a) pushing process state information from the kernel
space of the local memory directly to a core dump

application in the user space of the local memory;

(b) generating a core file in the user space of the
local memory from the process state information that is

pushed directly to the user space,

(c) wherein the core file is generated at the user

space instead of at the kernel space.

The Board is not convinced that feature (c), added by
amendment during the appeal procedure, adds a further
technical difference over D1. Features (a) and (b)
imply that the core file is generated at the user space
and not at the kernel space, because the core dump
application is using the user space of the local memory
to which the process state information from the kernel

level is pushed.

- 5 - T 2376/11

The objective technical problem deriving from the
differentiating features (a) to (c) may be regarded as
that set out by the examining division, namely to
provide a more complete picture of the overall state of
the operating system at the user space, following an

execution fault.

Facing the above objective technical problem, the
person skilled in the art would employ well-known data
transfer functions for the transfer of data between
user and kernel space, see for example, D4, page 225,
Table 8-1, to realise a transfer of process state
information from the kernel space to the user space in
order to create a core file which includes kernel space
data as well. The Board judges that the adaption of the
stand-alone extraction tool 240 or the user mode crash

dump process 220 would be straight-forward.

Claim 6 therefore lacks an inventive step over a
combination of D1 with D4. The Board further notes that
D1 suggests a combination of core files comprising
kernel and application information, see D1, column 8,
lines 26 to 57, and column 10, lines 21 to 28.

Contrary to the appellant's argument that D1 would
disclose only two options of crash dump files, the
Board considers D1 to disclose three options of crash
dump files: a complete memory crash dump file, a kernel
mode crash dump file and a user mode crash dump file,
see D1, column 1, lines 45 to 48, column 2, lines 42 to
46, and column 4, lines 60 to 65. In particular, column
4, lines 58 to 67, explains that a complete memory dump
file contains all of the physical memory present on the
system, that is, the user mode and the kernel mode
portion of the physical memory component. On the other

hand, the kernel mode crash dump file contains only the

10.

11.

- 6 - T 2376/11

kernel-mode read/write pages and no pages belonging to

user processes. A user mode crash dump file is a crash

dump file of an application at the time of a crash, see
D1, column 8, lines 32 to 39.

D1 therefore explicitly discloses a crash dump file
containing process state information of user mode,

kernel mode or both together.

The appellant further argued that the generation of a
complete memory crash dump file would be a complete
solution to the objective technical problem of having a
more complete picture of the overall state of the

operating system, following an execution fault.

The appellant's argument is not convincing, because D1
explicitly discloses generating a complete memory dump
file or a system crash dump file that represents the
state of the entire physical memory, see column 8,
lines 25 to 29.

The appellant further argued that the application does
not address the content of the (kernel mode) core dump
file, but the way in which it is generated, namely via
a more flexible user process at user level instead of a
more inflexible kernel process at kernel level. The
appellant considers that the technical objective
problem is therefore to provide an increased
flexibility with respect to the storage of process

state information from kernel space.

These arguments are not convincing, because no detailed
explanation has been given by the appellant why a user
process should be more flexible in the generation and
management of a core file compared to a kernel process.

In both situations the core dump process appears to

12.

13.

14.

-7 - T 2376/11

collect process state information and to store it in

the form of a crash dump file.

The choice of creating one or the other crash dump file
depends on the location of the error leading to the
crash, that is, whether the error occurred in the
kernel mode portion or in the user mode portion, see
D1, column 4, lines 15 to 19, and column 8, lines 26 to
39. According to column 4, lines 47ff., the kernel mode
crash dump file 30 is generated by a crash dump process
26 residing in the kernel mode portion 16 of a memory
component, and according to column 8, lines 47ff., the
user mode crash dump 230 is generated by a crash dump

process 220.

Contrary to the appellant's statement that D4 would
disclose only unspecific and generic data transfer
functions, the functions listed in Table 8-1 have a
specific role which is to access the process address
space in the kernel mode for implementing the process/

kernel model described in Section 1.6.1.

Even if accepted, the objective technical problem
suggested by the appellant to overcome insufficient
local memory for storing the kernel crash/core dump

file, does not lead to an inventive step.

This objective problem assumes that the user space of
the local memory has unlimited storage capacity, while
the kernel space is limited. However, the limitation of
the local storage capacity, as mentioned in paragraph
[5] of the application description, appears to apply to
both, the kernel space as well as to the user space,
because paragraph [19] of the application description
lists various methods to address memory limitations in

the user space. Such methods are a compression of the

- 8 - T 2376/11

core file, an extraction of only certain information
from it or a forward of the file to another system

which has permanent storage capacity available.

15. The purpose of the crash dump file of the present
application is, however, not different than in DI,
namely to collect state information about a system and
process (es) when they fail. This information is then
used for debugging and failure analysis, see D1, column
1, second paragraph, and is therefore expected to be as
complete as possible. It is a matter of limited obvious
choices, whether to store the collected process state
information in the form of a crash dump file at the

user or kernel space.

l6. Completeness leads to files of nearly "astronomical"
size, see D1, column 1, lines 35-37, in particular for
full crash dump files, and to storage problems, because
of a limited memory capacity, but also to transmission
problems to other computers, D1, column 8, lines 35ff.
This problem has also been recognised in the present
application, see paragraph 19, and was said to have

motivated the claimed invention.

Order

For these reasons it is decided that:

The appeal is dismissed.

T 2376/11

The Registrar: The Chairman:

d

d%ad o N
Y 0.in3 a1} A\Y
Ospieog ¥

N
&
2
6"} 3
(4

T. Buschek W. Chandler

Decision electronically authenticated

