BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-1 To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 22 October 2015
Case Number: T 1941/11 - 3.5.01
Application Number: 05732166.3
Publication Number: 1741033
IPC: GO6F15/00
Language of the proceedings: EN

Title of invention:

MULTITHREADED PROCESSOR WITH MULTIPLE CONCURRENT PIPELINES PER
THREAD

Applicant:
QUALCOMM Incorporated

Headword:
Multiple concurrent pipelines / QUALCOMM

Relevant legal provisions:
EPC 1973 Art. 56

Keyword:
Inventive step - (no)

Decisions cited:
T 2241/10, T 1963/11

EPA Form 3030 This datasheet is not p(lirt of thle Decision..
It can be changed at any time and without notice.

9

Europiisches
Fatentamt

Eurcpean
Patent Office

Qffice eurepéen
des brevets

Case Number:

Appellant:

Beschwerdekammern European Patent

Office

Boards of Appeal D-80298 MUNICH

GERMANY
Tel. +49 (0) 89 2399-0

Chambres de recours Fax +49 (0) 89

2399-4465

T 1941/11 - 3.5.01

DECISION

of Technical Board of Appeal 3.5.01

(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

of 22 October 2015

QUALCOMM Incorporated
5775 Morehouse Drive
San Diego, CA 92121 (US)

Beresford, Keith Denis Lewis
Beresford Crump LLP

16 High Holborn

London WC1V 6BX (GB)

Decision of the Examining Division of the
European Patent Office posted on 14 April 2011
refusing European patent application No.
05732166.3 pursuant to Article 97 (2) EPC.

W. Chandler

P.
I.

Scriven
Beckedorf

-1 - T 1941/11

Summary of Facts and Submissions

IT.

ITI.

This is an appeal against the decision of the Examining
Division to refuse European Patent application 05732166.3
for lack of clarity. The application is derived from a
PCT application published as WO 2005/101221, and
references to the contents of the application use this

published form.

The Examining Division considered that features relating
to the threads and pipeline stages and their effect were
not clear. The Division also considered, without making
it a ground of refusal, that apart from these features
the invention differed from D1 essentially only by the
use of an "architected accumulated register file", which
was an obvious routine measure in this field. During the
examination, inter alia, the following documents were

cited:

D1: Glossner, Hokenek, Moudgil: The Sandbridge
Sandblaster Communications Processor in "Software Defined
Radio: Baseband Technologies for 3G Handsets and
Basestations", John Wiley & Sons, 4 March 2004 ISBN
0-470-86770-1.

D4: Schulte et al.: A low-power multithreaded processor
for baseband communication systems, Lecture Notes in
Computer Science, vol. 3133, November 2004, pages 393 -
402.

D5: Ungerer, Robi¢, Silc: A survey of processors with
explicit multithreading, ACM Computing Surveys, vol 35,
No. 1, March 2003, pages 29 - 63.

The appellant submitted a new main request and three new

auxiliary requests with the statement setting out the

Iv.

VI.

-2 - T 1941/11

grounds of appeal. The Board set out its provisional view
in a communication sent with the summons to oral
proceedings. With its response, the appellant again
submitted a new main request and three new auxiliary
requests. The appellant also cited the following

document:

D7: Laudon, Gupta, Horowitz: Interleaving: a
multithreading technique targeting multiprocessors and
workstations, International Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 308 - 318.

At oral proceedings, the appellant's four requests were
discussed, after which the appellant formulated a single,
new request (new main request) consisting of a new
version of claim 1, based on the previous third auxiliary
request, and claims 2 - 15 as in that previous request,
it being understood that claim 15 would have to be
amended along the same lines as claim 1. For the course
of the oral proceedings, reference is made to the minutes
of 22 October 2015.

The appellant's final formulation of its requests were
that the appealed decision be set aside and that a patent
be granted on the basis of claim 1 according to the (new)
main request filed during the oral proceedings and claims
2 to 15 of the third auxiliary request filed with letter
dated 24 September 2015.

Claim 1 according the the sole request reads as follows.

1. A multithreaded processor comprising
a plurality of hardware thread units;
an instruction decoder coupled to the thread units for

decoding instructions received therefrom; and

- 3 - T 1941/11

a plurality of execution units for executing the
decoded instructions, said execution units including a
vector multiplication and reduction unit (460)
operable to produce a reduced sum;

wherein the multithreaded processor 1s configured for
issuing instructions from a plurality of threads
associated with respective ones of the hardware thread
units in accordance with a plurality of interleaved
multithreaded sequences each of which extends over a
plurality of processor clock cycles, in each of which,
on a given processor clock cycle only one of the
plurality of threads is permitted to issue an
instruction and in each of which a different one of
the plurality of threads issues an instruction on each
of said plurality of clock cycles so that each thread
issues an instruction in each said sequence; and said
instructions issued in each said sequence are executed
concurrently;

characterised in that:

the multithreaded processor includes an accumulator
register (406) and is configured so that:

(a) instructions executed by the vector multiplication
and reduction unit (460) are pipelined in pipelines
which have up to a predetermined number of stages,
said predetermined number being greater than the
number of threads N in said sequence, and which have:
an instruction decode stage, a vector register file
read stage, at least two multiply stages, at least two
add stages, an accumulator read stage, a plurality of
reduction stages, and an accumulator writeback stage;
and

(b) the number of concurrently executed instructions
in said sequence 1is such that the reduced sum produced
by the vector multiplication and reduction unit (460)
is stored in the accumulator register (406) for

further processing and before it is needed by the next

VII.

- 4 - T 1941/11

vector multiplication and reduction instruction from
the same thread,

whereby at least in a given one of the threads,
execution of a given instruction may begin before
completion of execution of a preceding vector
multiplication and reduction instruction issued by
said given thread in the preceding sequence, and said
accumulator read stage of the given pipeline executes
later than the accumulator writeback stage of said
preceding pipeline, said given thread thereby

supporting multiple concurrent instruction pipelines.

The appellant's arguments were as follows.

D1 was the best starting point for the assessment of
inventive step. The processor disclosed in D1 was
basically the same as in the present invention. However,
the vector processor of the invention had a accumulator,
which was not disclosed in D1. Nor did D1 disclose the
overlapping of instructions from a single thread in a

multi-thread machine.

In a single-thread machine, beginning execution of an
instruction only after the previous instruction had
completely finished was one possibility (Figure 1A of the
application) . Another was to use pipelining so that more
intensive use of processing units was possible. With
pipelining (Figures 1B and 2), the execution of an
instruction might start before the execution of a
previous one had finished. A problem arose, however, when
the second instruction needed data produced by the first.
It might happen that the second had to wait, so that some
clock cycles of the processor went unused (Figure 2).
These were called "bubbles", and it was the aim of the

invention to avoid them.

- 5 - T 1941/11

Some techniques were known for avoiding bubbles. One was
to provide at least as many threads as pipeline stages,
and to interleave instructions from each thread in turn.
That guaranteed that the first instruction of a thread
would have finished execution before the next instruction
of that thread started. It was, therefore, possible to
use the pipeline fully, without needing to check for
dependencies between instructions or taking special
measures such as "bypassing". According to the invention,
the number of threads needed to avoid bubbles by
interleaving threads could be fewer than the number of

stages in the pipeline.

The accumulator in the vector unite made some operations
faster by providing memory access within a single cycle,
whereas using general vector registers would require two
cycles. This, as explained in D4 (a document published
later than the earliest priority date of the present
application but which nevertheless gave useful
information as to the technology), was the purpose in the
XFER stages in the instructions I Mul and V_MUl (Figure 6
of the application). The V_Mul REDUCE instruction did not
need an XFER stage in its pipeline, because the writeback
stage was to the accumulator rather than to the wvector
register file. The effect was to make the pipeline
shorter and to make it possible to overlap instructions

from one thread in a pipeline.

- 6 - T 1941/11

Reasons for the Decision

Procedural issues

1. The appellant filed a new main request as the sole
request during oral proceedings, after lengthy
discussion of the previous main request and a short
discussion as to whether auxiliary requests I to III
should be admitted. Although late filed, the Board
admitted that request into the proceedings so that a
decision could be taken on the substance of the claimed

invention.

The Invention

2. The application is one of several that concern the
"Sandbridge Sandblaster" processor. Two others, at
least, have been the subject of appeal proceedings
(T 2241/10 Pipelined multioperand adder/QUALCOMM and
T 1963/11 Multithreaded processor/QUALCOMM) . D1 and D4
also address aspects of this processor. The processor
in question is designed for use in mobile devices,
especially in view of specific requirements for digital
signal processing (see, for example, D1, section 6.1).
The application does not identify this context, let
alone explain it. As a consequence, it has been
difficult for the appellant to formulate requests that

reflect the true technical background.

3. The processor, shown in Figure 4 of the application,
has three processing sections. One deals with branch
instructions, one with integer and load/store
operations, and one with vector operations. The
appellant has now restricted claim 1 to a particular

situation which arises in the vector processor. It

-7 - T 1941/11

concerns the interactions between a vector processing
pipeline and a plurality of threads, when a particular
instruction is issued twice in succession to the wvector

processor (this is described in more detail, below).

The application sets out a problem with pipelined
processors generally: when two instructions are
simultaneously in the pipeline and the second requires
some data generated by the first, the second will have
to wait (otherwise, the second instruction will read
the wrong data). This is shown in Figure 2 of the
application. The pipeline is idle for one or more clock
cycles, which means the processor cannot be fully
utilised. The application calls such idle cycles

"bubbles" and seeks to avoid them.

It was known completely to eliminate bubbles by
processing a number of different threads. Instructions
from different threads are assumed to be independent,
so by interposing enough instructions from other
threads, it can be assumed that a first instruction has
completely finished its execution before a second
instruction from the same thread enters the pipeline.
If the pipeline has N stages, and there are at least N
threads, then each instruction of each thread will have
finished execution, before the next instruction of the
same thread. This, however, assumes that each thread
takes a turn at most once every N threads. As explained
in D5 (page 35, right-hand column), but, unfortunately,
not in the application, this has a drawback: each
thread gets one N-th of the processor time, and there
is no flexibility for threads that need to issue
instructions more frequently or which can get by with
less. D5 mentions two ways of ameliorating this.
Firstly, the compiler may indicate dependencies between

instructions, so that the instructions from one thread

- 8 - T 1941/11

can safely be fed in to a pipeline more frequently (a
sort of dependency checking). Secondly, the caching
technique set out in D7 may be used. The application
seeks another way of allowing instructions from a

single thread safely to overlap in the pipeline.

As the application describes it, the invention consists
in allowing one thread out of several to have two or

more instructions in the pipeline at one one time, and
this is achieved by having a number of threads which is

smaller than the number of the pipeline stages.

In its full generality, the invention does not use
round-robin scheduling of threads but "token triggered
threading”, which (again unfortunately) is not
described in the application (see page 9, lines 12 - 18
of the published application), but in another
application (US6842848). Although this technique is
described as one possible embodiment, it is in fact the
most general form of thread scheduling envisaged in
terms of the order in which different threads issue
instructions to the pipeline. In particular, it can
implement round-robin scheduling. A central difficulty
with the application has been the lack of basis for a
formulation of thread scheduling in relation to

pipeline structure.

Claim 1 according to the sole request is restricted to
the situation in which one thread issues consecutive
V_Mul REDUCE instructions. There are various versions
of this instruction, as the application attempts to
explain (page 11, lines 14 - 23), but they all use the
pipeline structure shown in the bottom row of Figure 6.
Although claim 1 does not define this pipeline
structure, it is the only example given and the claim

must be read so as to include at least this structure.

-9 - T 1941/11

The pipeline consists of thirteen stages. When
implemented in the processor of D1 (the "Sandbridge
Sandblaster", also set out in US2003/0120901, to which
the application refers at lines 19 - 23 on page 6) so
that there are eight threads, each of which issues an
instruction every eight clock cycles, the second

V_Mul REDUCE instruction enters the pipeline before the
first has finished. Nevertheless, there are no bubbles.
This is because the accumulator read stage (the sixth
stage of the pipeline) necessarily occurs after the
previous instruction has written to the accumulator.
That, in turn, is because there are sufficient

intervening threads.

Inventive step

10.

The Board agrees with the Examining Division and with
the appellant, that D1 is a reasonable starting point
for the skilled person as it relates to a very similar
multithreaded processor having a vector processing unit
(Figure 6.1 cf. Figure 4 of the application). According
to the appellant, the vector processor of D1 does not
have an accumulator, and does not have a sequence such
that one thread can have two instructions in the
pipeline at one time. In particular, it does not have
that in the context of V _Mul REDUCE instructions.

It is not straightforward to understand the clause, in
claim 1, that specifies the sequence of threads, or to
see its basis in the application as filed. The
appellant explained that, when there are eight threads,
as in the example set out in the description of Figure
7 (page 12, from line 9 of the published application),
each of the "plurality of interleaved multithreaded

sequences" extended over eight clock cycles, and in

11.

12.

13.

- 10 - T 1941/11

each sequence, each of the threads issued one
instruction. The order of the instructions from one of
sequences to the next was the same. Thus, it could well
be the repeating sequence shown in Figure 6.3 of DI1.
The important point is that this sequence, being
constant, guarantees that two consecutive V _Mul REDUCE
instructions from one thread enter the pipeline exactly
eight clock cycles apart, as shown in Figure 7. This
guarantees the the stage in which the accumulator is
read by the second instruction (Figure 7, second line,
stage 13) necessarily comes after the stage in which
data are written to the accumulator in the first (first
line, stage 10). In fact, reading occurs three stages

after writing.

Computer processors are complicated things, as the
appellant argued during oral proceedings. The skilled
person possesses a wealth of background knowledge. In
the present case, the skilled person knew about
pipelining and about vector processors and about the

DSP operations needed in mobile devices.

In particular, the skilled person knew about pipelining
in single-thread machines, as shown in Figures 1A, 1B,
and 2 of the application. She knew that if a second
instruction read data before the first instruction had
written it, then there would be errors. That is why she
would delay execution of some stages in the second
pipeline (Figure 2). It is the reason there are bubbles
at all: they prevent the second instruction reading the

wrong value.

As mentioned above, the skilled person also knew that
one way of ensuring data was not read before it was
written was to interpose instructions from other

threads, but she also knew the costs of providing a

14.

15.

- 11 - T 1941/11

complete set of registers for each thread.

Starting from D1, the skilled person had a machine with
hardware support for eight threads. She has to
accommodate a V_Mul REDUCE instruction (D1, section
6.2.4) because it is needed when computing, for
example, "a sum of squares function common to many
signal processing kernels." D1 describes something of
the V_Mul REDUCE instruction (D1, penultimate paragraph
of section 6.2.4), but does not give detailed pipeline
stages. Nevertheless, it is clear that this instruction

will take more than eight stages.

According to Figures 6 and 7 of the application, the
V_Mul REDUCE instruction takes 11 stages. It is useful
to compare it with the V Mul instruction also shown in
Figure 6. The final two stages of V Mul are "XFER" and
"WB". The description has this to say (page 11, lines
12 - 13): "In stage 6 (Xfer), the results are
transferred back to the vector register file, and in
stage 7 (WB), the results are written back." The
skilled reader could be forgiven for wondering why the
results are written to the register file twice. The
explanation can be found in D4, on which the appellant
drew for explaining the invention, but which was
published after the earliest priority date. D4 sets out
a pipeline for a "vector multiply and accumulate"
instruction, which includes stages labelled "Xfer" and
"WB" (D4, Figure 6) and says: "The Transfer stage is
needed due to the long wiring delay between the bottom
of the VPU [the vector processing unit] and the VRF
[the vector register file]." Thus, the XFER stage is
there to account for the amount of time it takes to get
data from the processor to the register file. The XFER
and WB stages are simply this: during XFER, the data

can be seen as en route, during WB, they arrive in the

l6.

17.

18.

- 12 - T 1941/11

register. In contrast, the V _Mul REDUCE instruction
shown in Figures 6 and 7 of the application does not
have an XFER stage. The appellant explained that this
was because the accumulator did not have the "long
wiring delay", so only a single cycle was needed. The
accumulator, therefore, has the effect of shortening
the V_Mul REDUCE pipeline by one cycle. Without it,

there would have been twelve stages.

Even using the accumulator, the V Mul REDUCE
instruction takes three stages more than the number of
threads (eleven stages, eight threads). What is the
skilled person to do to avoid bubbles? She might
redesign the processor to provide hardware support for
more threads. She might accept that there will be
bubbles and provide the dependency checking that is
needed to insert idle cycles into the pipeline when
they are needed or insert idle cycles just in case they
are needed. The latter is the solution adopted in the
application for ALU and I Mul instructions shown in
Figure 6: each of the pipelines includes a WAIT cycle,
and a WAIT cycle is a bubble.

For consecutive V _Mul REDUCE instructions, however, the
skilled person need actually do nothing. With eleven
cycles in the pipeline and eight threads, and with the
accumulator being read only in stage 5, bubbles just do
not arise. Indeed, as shown in Figure 7, the second
instruction could even start two cycles earlier, and
still there would be no bubbles. (At least, there would
be no bubbles caused by reading the accumulator; the
reading of the register file is another matter, but the

invention does not deal with that.)

The claimed invention does not solve the problem of

removing (or avoiding) bubbles. There are no bubbles to

19.

20.

21.

- 13 - T 1941/11

remove.

While it is true that the accumulator shortens the
pipeline, the Board finds it difficult to accept this
as an alternative objective technical problem. Firstly,
the claim does not specify any particular pipeline
structure or relationship between pipeline structure
and the use of the accumulator. Secondly, the
application as filed does not explain the accumulator's
role in shortening the pipeline even when restricted to
the particular form of V _Mul REDUCE shown in Figures 6
and 7 (but not claimed). That role is only apparent
from D4, a document of which the reader of the
application as filed would have been unaware both
because the application does not refer to it and
because it was not published until later. However, even
if the Board did acknowledge this technical problem, it
would not help the appellant. The provision of a local

memory for faster access was standard practise.

Since the invention does not address any problem of
bubbles, the Board considers that the subject matter of
Claim 1 does no more than provide an accumulator in the
context of a processor which often needs to accumulate.
The provision of an accumulator is not a necessary
consequence; the register files could be used, for
example. But the provision of a specialised accumulator
would have been an obvious option as stated by the

examining division.

The Board concludes that the subject matter of claim 1
does not involve an inventive step (Article 56 EPC
1973) .

Conclusion

22.

T 1941/11

The appellant's request does not comply with the

requirements of the EPC and cannot be allowed.

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar:

T. Buschek

Decision electronically

(ecours
qdes brevegg
<z
b :
[/E'a”lung auy®
Spieo@ ¥

I\

ere

K2
b'/ (0]

authenticated

The Chairman:

W. Chandler

