BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:
(A) [-] Publication in 0OJ

(B) [=] To Chairmen and Members
(C) [-] To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 17 November 2014
Case Number: T 1730/11 - 3.5.06
Application Number: 03770720.5
Publication Number: 1559069
IPC: GO6N5/00
Language of the proceedings: EN

Title of invention:
STARTUP AND CONTROL OF GRAPH-BASED COMPUTATION

Applicant:
Ab Initio Technology LLC

Headword:
Graph-based Computation/AB INITIO

Relevant legal provisions:
EPC 1973 Art. 56

Keyword:
Inventive step - after amendment (yes)

Decisions cited:

Catchword:

This datasheet is not part of the Decision.
EPA Form 3030 It can be changed at any time and without notice.

9

Eurcpiisches
Patentamt
European
Fatent Office

office europien
des brevets

Case Number:

Appellan
(Applica

Representative:

t:
nt)

Beschwerdekammern European Patent Office

D-80298 MUNICH

Boards of Appeal GERMANY
Tel. +49 (0) 89 2399-0
Chambres de recours Fax +49 (0) 89 2399-4465

T 1730/11 - 3.5.06

DECISTION

of Technical Board of Appeal 3.5.06

Decision under appeal:

Composition of the Board:

Chairman
Members:

of 17 November 2014

Ab Initio Technology LLC
201 Spring Street
Lexington, MA 02421 (US)

Lloyd, Patrick Alexander Desmond
Reddie & Grose LLP

16 Theobalds Road

London WC1X 8PL (GB)

Decision of the Examining Division of the
European Patent Office posted on 23 March 2011
refusing European patent application No.
03770720.5 pursuant to Article 97 (2) EPC.

W. Sekretaruk

M. Miuller
A. Teale

-1 - T 1730/11

Summary of Facts and Submissions

IT.

The appeal lies against the decision of the examining
division, with reasons dispatched on 23 March 2011, to
refuse European patent application No. 03770720.5. The

decision made reference inter alia to the documents

D1: Babaoglu 0. et al., "Mapping parallel computations
onto distributed systems in Paralex", Proc. 5th
Annual European Computer Conference, pp. 123-130,
IEEE Press, 1991,

D2: Gamma E. et al., "Design Patterns: Elements of
Reusable Object-oriented Software", pp. 117-126
and 325-330, Addison Wesley, 1999, and

D3: US 6 314 114 BI1,

and came to the conclusion that claim 1 according to
the then main and first and second auxiliary requests
did not involve an inventive step over D1, in view of
D2 and D3, Article 56 EPC, and that independent claims
of the first auxiliary request did not comply with
Article 123 (2) EPC.

A notice of appeal was filed on 2 June 2011, the appeal
fee being paid on the same day. A statement of grounds
of appeal was received on 2 August 2011, together with
amended sets of claims 1 to 25 according to a main and
four auxiliary requests. The appellant requested that
the decision under appeal be set aside and that a
patent be granted based on one of the amended sets of
claims. The board understands the remaining application

documents to be as follows:

description pages:
1-3 as filed with the grounds of appeal
4-16 as published.

ITT.

-2 - T 1730/11

drawings, sheets:
1/7-7/7 as published.

The appellant further requested oral proceedings in
case the board were minded to issue a decision adverse

to the appellant.

Claim 1 of the main request reads as follows.

"A method of executing, on a computer system, graphs

expressing computations including:

(a) providing at least two graph templates (310) each
associated with a different computation graph (100),
each computation graph (100) including a number of
graph elements each associated with a corresponding

computation;

(b) forming at least two pools of processes, each

associated with a different type of processing; and

(c) processing multiple data streams concurrently, each
associated with a different instance (300) of a
corresponding computation graph, including for each of

the data streams,

forming a graph instance (300) from the graph template
(310) for the corresponding computation graph
(100), including allocating memory for a runtime
data structure for that graph instance and copying
the graph template (310) into the allocated
memory, wherein each runtime data structure
includes a copy of the graph template (310), a
buffer section (350) which holds work elements as
work elements are passed between the graph

elements and queued prior to processing, and input

- 3 - T 1730/11

counts for each graph element initialized to the

number of inputs for that graph element,

wherein each graph element of the graph instance (300)
is associated with a corresponding one of the
pools of processes, based on the type of
processing associated with each pool of processes,
wherein a first graph element is associated with a
corresponding first pool of processes and a second
graph element is associated with a corresponding

second pool of processes,

for each graph element of the graph instance (300),
assigning processes from the corresponding one of
the pools of processes when at least some part of
all of the inputs for the graph element are
available according to the initialized input
counts, wherein the processes read and write work
elements from and to the buffer section (350) of
the runtime data structure for the graph instance

(300) during processing of the data stream, and

processing the data stream with the graph instance
(300), including performing the computations
corresponding to the graph elements of such graph

instance (300) using the assigned processes;

wherein steps (a) and (b) are performed prior to step

(C) Rl

Claim 25 of the main request reads as follows:

"A system for executing, on a computer system, graphs

expressing computations including:

- 4 - T 1730/11

at least two graph templates (310) stored in data
storage each associated swith a different type of
graph-based computation, each template (310)
comprising a number of graph elements each

associated with a corresponding computation;

means for forming at least two pools of processes, each
associated with a different type of processing;

and

means for processing multiple data streams
concurrently, each associated with a different
instance (300) of a corresponding graph-based
computation, including for each of the data

streams,

forming a graph instance (300) from the graph template
(310) associated with the corresponding type of
graph-based computation, said graph instance (300)
having graph elements corresponding to the graph
elements of the graph template (310), including
allocating memory for a runtime data structure for
that graph instance and copying the graph template
(310) into the allocated memory, wherein each
runtime data structure includes a copy of the
graph template (310), a buffer section (350) which
holds work elements as work elements are passed
between the graph elements and gqueued prior to
processing, and input counts for each graph
element initialized to the number of inputs for

that graph element,

wherein each graph element of the graph instance (300)
is associated with a corresponding one of the
pools of processes, based on the type of

processing associated with each pool of processes,

- 5 - T 1730/11

wherein a first graph element is associated with a
corresponding first pool of processes and a second
graph element is associated with a corresponding

second pool of processes,

for each graph element of the graph instance (300),
assigning processes from the corresponding one of
the pools of processes when at least some part of
all of the inputs for the graph element are
available according to the initialized input
counts, wherein the processes read and write work
elements from and to the buffer section (350) of
the runtime data structure for the graph instance

(300) during processing of the data stream, and

processing the data stream with the graph instance
(300), including performing computations
corresponding to the graph elements of such graph

instance using the assigned processes;

wherein the system is configured to form the at least
two pools of processes prior to processing the
multiple data streams concurrently, each
associated with a different instance (300) of a

corresponding graph-based computation."

Iv. The wording of the independent claims of the auxiliary

requests is immaterial to the present decision.

Reasons for the Decision

1. The invention

1.1 The application relates to the efficient execution of

computations expressed as data flow graphs (see p. 4,

- 6 - T 1730/11

par. 38). The vertices (or nodes) in these graphs
(illustrated in fig. 1) represent computational tasks
and the links indicate the paths along which the data
flows in chunks referred to as "work elements". A com-
putation at a vertex can start as soon as (but also no
earlier than when) a work element is available at each
input link. When the computation has terminated, the
result is sent as a new working element along the out-

put link.

It is disclosed that there are several "types of
graphs" representing different types of "work flow" or
transactions that might be needed. For example, in a
banking context, there may be a different such graph

for each necessary financial transaction (see par. 87).

The work is performed by processes which may be tai-
lored to particular vertexes of particular types of

graphs (see par. 63).

To "run" a work flow, a suitable graph data structure
is created in a shared memory segment through which the
processes can communicate, and each pool is associated
with some of the vertices of the graph; this involves
"an initialization procedure [on the process] which
includes mapping the shared memory segment for the
graph instances into the address space of the pro-

cess" (see par. 58).

For each type of graph there is a "template" from which
instances of graphs are created. It is possible to cre-
ate and run several such instances concurrently (see
par. 41). To create a graph data structure, the temp-
late corresponding to the required type of graph is co-
pied into the shared memory segment. In addition,

buffer space is allocated to hold the work elements

-7 - T 1730/11

"queuing" at individual vertices (see fig. 3 and esp.
pars. 55 and 67).

Prior art

Document D1 discloses a programming environment, called
Paralex, for the development and execution of data flow
programs "on distributed systems as if the latter were
uniform parallel multiprocessor computers" (abstract).
Paralex is based on data flow graphs which express the
same sort of "coarse-grain" data flow as the applica-
tion (see sec. 2.2, esp. 1lst two pars.). A graph is
also referred to as a "program", i.e. the graph can be
executed. Before a Paralex program can be executed, the
nodes of the graph must be associated with suitable
hosts (sec. 2.4); it is said that the "computation
graph" is embedded in the "system graph" (see sentence
bridging pp. 125 and 126). For each node there are sets
of hosts OHi and PHi defining those hosts on which node
i can respectively should preferably be executed (see
sec. 4, last par., and sec. 4.2). The requirements and
preferences expressed by these sets are taken into
account when the nodes are mapped to the hosts of a gi-
ven network. A set of nodes which have to be executed
sequentially - referred to as a "chain" - are mapped to
the same host so as to minimize non-local data communi-
cation (sec. 4.1). At the hosts, each node will be exe-
cuted as a Unix process (see sec. 2.4). Nodes at the
same host communicate with each other via finite
buffers (see sec. 4.6) so as to decouple computations
proceeding at varying speed. D1 discloses that diffe-
rent graph instances can be executed in parallel on
different hosts, either to achieve tolerance against
node failure (sec. 4.4) or have parallelism between
different iterations in case of pipelined operation

(see sec. 4.0).

- 8 - T 1730/11

The book excerpt D2 discloses the idea of "prototype
patterns”" to create instances of classes by "cloning" -
i.e. deep copying - a given "prototype" and initiali-
sing it properly. Prototypes are introduced to avoid

the need to replicate class hierarchies.

Document D3 discloses a distributed system of computing
systems referred to as nodes. Each node which offers
services to execute on request by (and on behalf of)
other nodes, provides a "dedicated process pool" of
varying size for each possible requesting node (see
col. 1, lines 40-46; and col. 7, lines 4-9).

Article 123 (2) EPC

The decision under appeal did not raise any objection
under Article 123 (2) EPC against the then main request,
nor does the board have occasion to raise an objection
of its own. Furthermore, the board is satisfied that
the amendments made to the claims of the main request
are based on the application as originally filed as
indicated by the appellant in its statement of grounds
of appeal (see p. 1, 3rd par. - p. 2, 4th par.).

Article 56 EPC 1973

The appellant challenges the decision under appeal
mainly on two grounds: firstly, it argues that the
"sets of nodes" in D1 are so different from the "pools
of processes" of the present invention that the skilled
person would not have considered replacing the set of
hosts with pools of processes (see grounds of appeal,
esp. p. 6, penult. para.). Secondly, it points out with
respect to the runtime graph data structure that "Dl is
concerned with processing computations over a

distributed system, and shared memory is not an obvious

-9 - T 1730/11

or compatible choice for the communications between
hosts or work stations on a network" (see p. 7, last

para. and p. 8, penult. para.).

The board agrees on the second point. D1 does not dis-
close the use of physically shared memory. The board
notes that the concept of shared distributed memory al-
so exists but that this does not, according to conven-
tional understanding, imply physically shared memory
but only a shared address space which makes access to
physically distributed memory transparent to applica-
tions. Since the nodes of the computation graph are
spread across the distributed system, so will be any
data structure representing the computation graph. The
board concludes in agreement with the appellant that
the idea of copying a graph template data structure
into the suitably allocated memory is not compatible
with - and thus not obvious in view of - D1 as it

stands.

This copying would be compatible, however, with a
single multiprocessor computer with shared memory. Al-
though the abstract of D1 introduces Paralex as a "pro-
gramming environment that allows parallel programs to
be developed and executed on distributed system as if
the latter were uniform parallel multiprocessor compu-
ters" (emphasis by the board) and is thus specifically
targeted at distributed systems as distinct from multi-
processor computers, the board deems it nonetheless to
be a realistic problem for the skilled person to con-
template which modifications of the system of D1 might
be required - and which simplifications achievable - if
the system of D1 were adapted to a multiprocessor sys-
tem. For example, the skilled person might have a sui-

table microprocessor system at hand and want to assess

- 10 - T 1730/11

the possible speed-up from adapting the system of D1 to
it.

Doing this, the skilled person would realize that on a
multiprocessor computer there would be no need for the
sets of nodes or the chains of D1. D1 distinguishes
between sets of hosts OHi and PHi which can or prefe-
rably should execute a certain node i. Since a single
multiprocessor would be a single "host", this distinc-
tion would become void. Further, D1 groups nodes which
lie along a "chain of data flow edges" and maps entire
such chains to hosts so as to keep "all of the data
communication along a chain local" (see sec. 4.2, 1lst
para.; sec. 4.3) and thus to achieve the overall goal
of "maximizing parallel execution and minimizing remote

communication" (see sec. 4, lst para.).

The board considers that on a single multiprocessor
computer with shared memory it would be obvious for the
Unix processes (see sec. 2.4) executing the individual
nodes to communicate with each other via buffers in
shared memory. As the data flow is determined by each
computation graph, the necessary buffers are effective-
ly implied by the computation graphs. Under these cir-
cumstances, the board considers that the claimed crea-
tion of a computation graph data structure by copying a
suitable template representing the computation graph
and extending it with suitable buffer space (see also
fig. 3) would be obvious for the skilled person, be it
from first principles or from the prototypes according
to D2.

The board further considers that the dynamic allocation
of processes from a pool of processes to individual
nodes of the computation graphs being executed would be

obvious as a matter common programming practice.

- 11 - T 1730/11

However, the system so obtained would still differ from
the claimed invention in not having the features of
"forming at least two pools of processes, each associa-
ted with a different type of processing" (e.g. step b
of method claim 1), "each graph element [being] associ-
ated with a corresponding one of the pools of pro-
cesses, based on the type of processing associated with
each type of processes" (claim 1, step ¢, 3rd para.),
prior to instantiating and processing a computation

graph (claim 1, last line).

The decision denied (reasons 2.2.1) that the "forming

of the pool and assigning of processes from the pools"

had a technical effect because "[t]lhe technical effect
of pools is usually obtained if" - and 'only if', as
the board understands the argument - "the pooled re-

source is reused". While the independent claims indeed
do not literally specify that the pooled resource is
"returned" to the pool and may be "reused", the board
notes that claims 1 and 25 disclose the dynamic alloca-
tion of processes ("when ... inputs ... are avai-
lable"). The board agrees with the appellant that al-
ready the provision of pools of processes has a tech-
nical effect, namely at least that of enabling the
technical effect of "pooled resources" which the exami-
ning division referred to. Hence, it can be left open
whether, as the board tends to think, the skilled per-
son would even consider it implicit from the term
"pool" in the given context that processes are returned
to the pool and possibly reused once their task is

finished and the used inputs are no longer available.

In summary, the board agrees with the appellant that
the pre-computation of tools of processes dedicated to

different types of processing and vertexes is not void

- 12 - T 1730/11

of any technical effect but that it rather contributes

to the efficient execution of computation graphs.

4.10 As argued above, the sets of hosts in D1 neither imply
nor suggest these difference features, since they
serve, as the appellant correctly arques, a different
purpose which, moreover, is irrelevant on a single
shared memory machine. The board also considers that
neither the other documents on file nor the common
knowledge in the art discloses or suggests these

features in the given context.

4.11 Therefore, the board comes to the conclusion that the
independent claims 1 and 25 of the main request involve
the required inventive step in the sense of Article 56

EPC 1973 over the prior art on file.

Further comments

5. The board has no occasion to raise any objection to the

dependent claims 2-24.

6. The board notes however that the description does not
conform with the amended claims according to the main
request. For example, the very feature causing the
board to acknowledge an inventive step (see points 4.7
and 4.9) above, is disclosed as optional in the present
description: see paragraph 63, which discloses that
different types of pools only "may be made of pro-

cesses ... tailored to a particular vertex".

7. Since this decision allows the appellant's main re-
quest, its conditional request for oral proceedings

does not come into play.

T 1730/11

Order

For these reasons it is decided that:

. The decision under appeal is set aside.

2. The case is remitted to the department of first in-
stance with the order to grant a patent based on
claims 1-25 according to the main request as filed

with the grounds of appeal with a description to be

adapted.

The Registrar: The Chairman:

werdekg
OV aisch m
) pdischen p,, 7))
Q" ® e, /Q,
D & /"e/%/a

S

oo™

(ecours
des brevetg
[/E'a”lung aui®
Spieo@ ¥

(4]

)
© % ¥ %
&0, % A
®,%s, oV &
o (Z’J/g,, op as\.x‘:g,aé

eyy + \

B. Atienza Vivancos W. Sekretaruk

Decision electronically authenticated

