BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:
(A) [-] Publication in 0OJ

(B) [=] To Chairmen and Members
(C) [-] To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 16 March 2015
Case Number: T 0659/11 - 3.5.06
Application Number: 03729009.5
Publication Number: 1546857
IPC: GO6F9/44
Language of the proceedings: EN

Title of invention:
SYSTEM AND METHOD FOR MAKING USER INTERFACE ELEMENTS KNOWN TO
AN APPLICATION AND USER

Applicant:
Microsoft Technology Licensing, LLC

Headword:
Control pattern/MICROSOFT

Relevant legal provisions:
EPC 1973 Art. 56

Keyword:
Inventive step - (no)

Decisions cited:

Catchword:

EPA Form 3030 This datasheet is not p(?\rt of thg Dec151on?
It can be changed at any time and without notice.

Eurcpiisches

Patentamt
European
Patent Office
office europien

des brevets

Beschwerdekammern
Boards of Appeal
Chambres de recours

Case Number: T 0659/11 - 3.5.06

Appellant:
(Applicant)

Representative:

Decision under appeal:

DECISTION
of Technical Board of Appeal 3.5.06
of 16 March 2015

Microsoft Technology Licensing, LLC
One Microsoft Way
Redmond, WA 98052 (US)

Grinecker Patent- und Rechtsanwalte
PartG mbB

LeopoldstraRe 4

80802 Miunchen (DE)

European Patent Office
D-80298 MUNICH
GERMANY

Tel. +49 (0) 89 2399-0
Fax +49 (0) 89 2399-4465

Decision of the Examining Division of the

European Patent Office posted on 19 October 2010

refusing European patent application

No. 03729009.5 pursuant to Article 97(2) EPC.

Composition of the Board:

Chairman
Members:

W. Sekretaruk
S. Krischer
G. Zucka

-1 - T 0659/11

Summary of Facts and Submissions

IT.

The appeal is directed against the decision of the
examining division, posted on 19 October 2010, to
refuse the application 03729009. The reasons for the
refusal are for the main request lack of original
disclosure (Article 123(2) EPC) and lack of inventive
step (Article 56 EPC 1973) over the following document,
and for the remaining requests lack of inventive step

only:

D1 Anonymous: "GNOME Accessibility for Developers -
DRAFT: How to make GNOME 2.0 Applications
Accessible, Examples that Use the Accessibility
API", Internet article, August 2002, pages 1-6,
XP2443743, retrieved on 23 July 2007 from http://
web.archive.org/web/20020821064040/
developer.gnome.org/projects/gap/guide/gad/gad-

api-examples.html.

The following document is also cited in the appealed

decision, but not used in its argumentation:

D2 Anonymous: "ATK Implementation Proposal
Draft 0.5", Internet article, 2 November 2001,
pages 1-24, XP2443745, retrieved on 23 July 2007
from http://web.archive.org/web/ 20011102020337/
http ://developer.gnome.org/projects/gap/tech-
docs/GTKimpl.html.

A notice of appeal was received on 15 December 2010.

The appeal fee was received the same day. A statement
of the grounds of appeal was received on 16 February

2011. The appellant made a main and two auxiliary

requests and requested oral proceedings.

ITT.

Iv.

VI.

VII.

-2 - T 0659/11

In its summons to oral proceedings, the board gave
reasons for its preliminary opinion that all of the
requests lacked an inventive step over D1. The summons
was silent with respect to Article 123(2) EPC, since
the main request of the refusal decision was not

maintained.

In a letter dated 23 February 2015, the appellant filed

claim sets of new auxiliary requests 1 and 2.

Oral proceedings were held on 16 March 2015 during
which the appellant filed the following document:

Anonymous: "AtkACTION: ATK - Accessibility Toolkit",
Internet article, pages 1-4, retrieved on 13 March 2015
from https://developer.gnome.org/atk/unstable/
AtkACTION.html.

At the end of the oral proceedings, the board announced

its decision.

The appellant requests that the decision be set aside
and a patent be granted on the basis of claims 1-15 of
a main request (the refused first auxiliary request)
filed on 24 August 2010, claims 1-15 of a first
auxiliary request or claims 1-13 of a second auxiliary
request, both filed on 23 February 2015.

The further text is: description pages 2, 4-14 as
published, pages 1, 3, 3b, 15 filed on 26 May 2008,
page 3a filed on 10 November 2008; drawing sheets 1-6
as published.

Claim 1 of the main request reads as follows:

- 3 - T 0659/11

"l. A computer-implemented method for programmatically
manipulating a user interface element of an application

(202), the method comprising:

gathering (513), by an automation utility (201), from
the user interface element of the application (202)
information about the user interface element, the
information being stored within a property of the user

interface element;

conveying, by the automation utility (201), the

information to the user;

requesting (515), by the automation utility (201), from
the user interface element of the application (202)
whether the user interface element supports a control
pattern, the user interface element being of a
particular user interface element type, the control
pattern describing basic functionality exposed by a

plurality of types of user interface elements; and

if the user interface element supports the control

pattern,

returning an interface that comprises at least one
method supported by the user interface element,

and

programmatically manipulating (517), by the
automation utility (201), the user interface
element using the at least one method comprised in
the returned interface and exposed by the user
interface element, the returned interface

corresponds to the control pattern,

whereby the user interface element is programmatically
manipulated by the automation utility through the

returned interface associated with the control pattern

VIIT.

- 4 - T 0659/11

based on its support of the control pattern without

reference to the user interface element's type."

Claim 1 of the first auxiliary request differs from
claim 1 of the main request in that the third and

subsequent steps read (additions marked in italics):

"requesting (515), by the automation utility (201),
from the user interface element of the application
(202) whether the user interface element supports a
control pattern, the user interface element being of a
particular user interface element type, the control
pattern being associated with at least one predefined
method included in one or more user interface elements,
the control pattern describing basic functionality
exposed by a plurality of types of user interface

elements; and

if the user interface element supports the control

pattern,

returning an interface that comprises the at least
one method for the control pattern that is

supported by the user interface element, and

programmatically manipulating (517), by the
automation utility (201), the user interface
element by using the at least one method comprised
in the returned interface and exposed by the user
interface element, the returned interface

corresponds to the control pattern,

whereby the user interface element is programmatically
manipulated by the automation utility through the
returned interface associated with the control pattern
based on its support of the control pattern without

reference to the user interface element's type."

IX.

- 5 - T 0659/11

Claim 1 of the second auxiliary request differs from
claim 1 of the first auxiliary request in that the

third and the subsequent steps read (additions marked

in italics; deletions are struvek—through) :

"requesting (515), by the automation utility (201),
from the user interface element of the application
(202) whether the user interface element supports a
plurality of control patterns, the user interface
element being of a particular user interface element
type, each of the plurality of control patterns being
associated with at least one predefined method included
in one or more user interface elements, each of the
plurality of control patterns describing basic
functionality exposed by a plurality of types of user
interface elements, wherein the user interface element

supports a plurality of different control patterns; and

if the user interface element supports the control

pattern,

returning an interface that comprises the at—deast
ere plurality of methods for the control pattern
fhat—+s supported by the user interface element,

and

programmatically manipulating (517), by the
automation utility (201), the user interface
element by using at least one of the plurality of
methods comprised in the returned interface and
exposed by the user interface element—he
returpedinterface—corresponds—teo—the—econtrot
pattern,

whereby the user interface element is programmatically

manipulated by the automation utility through the

- 6 - T 0659/11

returned interface associated with the plurality of
control patterns based on its support of the plurality
of control patterns without reference to the user

interface element's type."

Reasons for the Decision

1. Overview of the invention

The application relates to programmatically
manipulating user interface (UI) elements of an
application program by a so-called "automation
utility", such as an assistive technology application
(e.g. a screen reader which narrates UI elements via a
text-to-speech engine to visually impaired persons or
which sends such information to a Braille display;
original description page 1, lines 20-23, 14-15, 28),
an automated testing script, a macro recorder, a
commanding application (page 4, lines 27-29; original
claim 5), a speech and dictation software or a "command
and control utility" (page 7, lines 27-30; original
claim 5). Programmatically manipulating a UI element
means for example that the automation utility "presses"
a UI button by calling a method (page 9, last but one
box at the bottom of the table: "Invoke - ... For
example, a button supports this pattern to allow an
automation utility to programmatically press the

button.").

The claimed computer-implemented method is two-fold:
The first part consists of the first two steps (which
stem from original claim 7). The second part consists

of the remaining steps.

-7 - T 0659/11

In the first part, the automation utility requests
information (called "properties"; e.g. the name of a
button, page 12, lines 1-3) from the UI element and
"conveys" this information to the user (e.g. narrates
the button name "Help Button" to the user; page 12,
first paragraph; see also page 13, second paragraph and
figure 5 (513)). According to the description, this may
for example happen in the context of the user
navigating to a UI element, e.g. a button (page 11,
lines 17-22; page 12, line 1).

In the second part, the automation utility queries
whether the UI element supports a specific "control
pattern", like the "Invoke control pattern" (page 12,
lines 12-14; page 14, lines 12-13; figure 6 (605)). If
yes, the automation utility receives an "interface"
with a method name (e.g. method name "Y" of an
interface named "X" in figure 4, (414)) from the UI
element (page 12, lines 14-16; page 13, paragraph 4).
The automation utility then manipulates the UI element
with the help of the method [name] from the received
interface (e.g. presses the button for invoking the
button function by calling the method "Y"; page 12,
lines 14-16; page 13, lines 19-21 and figure 5 (517);
page 14, lines 30-33).

Overview of the decision

Claim 1 of all requests lacks an inventive step
(Article 56 EPC 1973).

Inventiveness

Main request

1.

1.

1.

- 8 - T 0659/11

The main request is identical to the refused first
auxiliary request. In decision section 4, claim 1 was
found to lack inventive step over D1, also referring
back to section 3 (in particular to 3.3-3.6 for the
second part of the claim from which differentiating

feature (III) stems).

The decision (3.3) identifies the interface names of DI
(e.g. "ACTION" or "COMPONENT" on page 2, lines 17-24;
or "TEXT" on page 4, lines 9-11) with the names of the
"control pattern" in the claim (see also description
pages 9-10, the left column of table 1: "Invoke",
"Sort" or "Window"). This identification of the
decision is also mentioned in the grounds for refusal
(page 2, paragraph 4) and was not contested by the
appellant until the oral proceedings, during which the
appellant argued that in addition to differentiating
feature (III) (i.e. returning an interface instead of a
boolean value as in Dl1), a control pattern was

different from an interface and was missing in DI1.

According to the board's view as set out during oral
proceedings, the control pattern in the application is
an informal notion (see pages 9-10, table 1 which
merely discloses names and natural language
descriptions). It is formally represented by the (one)
interface corresponding to the respective control
pattern. A program (like the automation utility of the
claim) cannot deal with informal notions. Therefore,
the third step in the claim, which requests whether the
UI element supports a control pattern, is considered to
be a request whether the UI element implements the
interface corresponding to the control pattern in

question or, more precisely, whether the UI element

1.

1.

-9 - T 0659/11

implements the methods of the interface of the control

pattern in question (see page 13, paragraph 4).

It has to be noted that in this context the word
"interface" does not relate to "user interface", but to
"application programming interface" (API). Throughout
the whole description, the application uses the
expression "user interface" to designate a graphical
user interface (GUI) of an application (202 in

figure 2; page 6, last paragraph) and "user interface
element" for a GUI control of that application (see
page 3, last paragraph, first sentence; e.g. a button).
As to the word "interface" (without the word "user"),
its most concrete disclosure in the application is on
page 12, second paragraph which refers to figure 4:
item 414 is the only example of an interface in the

application and reads:

"I'face X{
Method Y
Method Z}"

This is what is usually called an API (except that the
parameter types and the result types usually also
contained in an API are missing). Technically, it
results in a collection of method names (here "Y" and
"Z") which have to be implemented by properly
programmed methods (with the same names) in a program
(or in a program library). D1 also relates to an API,
see the title of D1: "Examples that Use the
Accessibility API".

It seems that these two meanings of the word
"interface" were mixed up in the appellant's letter of

reply dated 23 February 2015 (after the summons for

1.

1.

- 10 - T 0659/11

oral proceedings). It is stated on page 2, paragraph 2,

sentence 5 that:

"In contrast, Dl merely returns an indication of
the existence of an interface element in response
to a query for that particular interface

element." (emphasis added)

However, D1 is not about (user) interface elements
(which are controls of the GUI toolkit GTK), but about
the accessibility API for GTK, called ATK. According to
D1, page 2, lines 18-24, the macro function

ATK IS ACTION returns TRUE if the concerned UI element
implements the interface "ACTION" (which allows for

example to click a button, see D2, page 8, line 13).

Therefore, the board is not convinced by the
appellant's argument that the control pattern is a
further differentiating feature, but it agrees with the
decision that the request in D1 whether a UI element
implements an ATK interface can be identified with the
request in the claim whether a UI element supports a

control pattern.

It follows that the only feature in which the claim
differs from D1 is feature (III) of the decision. The
grounds (page 3, paragraphs 1-4) mainly dispute that it
would be obvious to arrive at feature (III) starting
from D1 (as stated in decision sections 3.3-3.5). In
other words, the grounds do not consider it to be
obvious that the application (202) returns the
requested interface of a supported control pattern when
starting from D1 which merely returns TRUE or FALSE on

the request about the support of an interface.

3.1.10

3.1.11

- 11 - T 0659/11

The first argument of the grounds (page 3, first
paragraph) is that there is no hint in D1 that the

skilled person would have done so.

However, D1 apparently assumes that the automation
utility already has access to the interface of
interest. The board further expects that also in the
application the automation utility program already has
access to the interface before it is returned: assume
that the returned interface of the control pattern
"Window" from table 1 on page 10 contains method names
"a" to "e" to change the position and the size of a
window, to maximise and minimise it and to make it
fullscreen. How should the automation utility program
(or its programmer) know which one of the methods "a"
to "e" of the returned interface does what in order to
call the appropriate method to apply the intended

functionality to the UI element?

Be that as it may, since D1 is a description of a
certain implementation, it is not surprising that it
does not describe an implementation variant which the

system described in D1 does not provide.

Furthermore, the board has a similar opinion as the
decision (3.3): The board considers it to be an obvious
design option to change the method from returning
boolean values (TRUE, FALSE) to returning an interface
(as disclosed in figure 4 (414)). Thus, there is no
need to disclose such an implementation detail in DI1.
The skilled person would consider it obvious to change
the method of D1 accordingly if the program context

required it.

3.1.12

3.1.13

3.1.14

3.1.15

- 12 - T 0659/11

Moreover, the application does not disclose how an
interface is to be returned in the application. The
board can only speculate whether this might be done by
a reference (i.e. by a name, an ID or a pointer) or by

the content of the interface (i.e. the method names).

In their second argument, the grounds (page 3,
paragraphs 2-4) repeat an argument from the letter of
24 August 2010 (page 4, paragraphs 3-6) that the
methods of the interface had the sole purpose of
retrieving information from a UI element, whereas the
invention only did so in the first part of the claim
when retrieving property information. In the second
part of the claim, the methods of the returned

interface only manipulated the UI element.

The board cannot accept these lines of argument.
Firstly, D1 also discloses methods which manipulate UI
elements, as stated in the decision (last paragraph of
3.4) with respect to the interface ACTION (D1, page 2,
line 21). The board notes that according to D2 (page 8,
line 13) the interface ACTION manipulates a button by
clicking, pressing and releasing it.

Secondly, the description of the application also
discloses, among others, interface methods which do not
manipulate the UI object, but retrieve information from
it, see page 12, line 16: "In another example, a
Selection control pattern (associated with the combo
box 320) may provide methods to query for selected

items".

Thus, the board takes the view that the interface
methods of D1 correspond to the methods of the returned
interface of the claim (cf. decision 3.4 and grounds,

page 3, paragraph 5).

3.1.16

3.1.17

3.1.18

- 13 - T 0659/11

In their third argument, the grounds (page 4, para-
graph 3) state that an automation utility using the
method of D1 "additionally need[s] to obtain the
capability of manipulating that user interface
element", either by already having the "capability" or

by retrieving/obtaining a method for manipulating.

From a technical point of view it seems to be
undeniable that the technique of D1 gives to an
automation utility the "capability" of calling the
methods of an interface like ACTION, COMPONENT or TEXT.
It is assumed that in D1 as well as in the invention
this happens in the way which usual programming
languages allow (e.g. by linking libraries to the
executable code of the automation utility), since
neither D1 nor the application disclose any specific

technique for this.

Therefore, claim 1 of this request is considered not to
be inventive in the sense of Article 56 EPC 1973.

First auxiliary request

It was not disputed by the appellant during oral
proceedings that claim 1 of the first auxiliary request
merely clarifies claim 1 of the main request.

It follows that the same reasoning as for the main

request also applies to the first auxiliary request.

Therefore, claim 1 of this request is considered not to
be inventive in the sense of Article 56 EPC 1973.

.3.

.3.

- 14 - T 0659/11

Second auxiliary request

Claim 1 of this request differs from claim 1 of the
main request by specifying that the method of the main

request also works for a plurality of control patterns.

However, also the UI elements of D1 can implement a
plurality of ATK interfaces, see D2 (which describes
further details of the framework of D1), page 9,
section "GtkButton Notes" where the UI element
GtkButton implements the ATK interfaces ACTION,
COMPONENT, TEXT etc. It is furthermore obvious for a
skilled person who wants to program a request whether a
UI element supports a plurality of control patterns to
call the corresponding ATK IS ... macro functions in

its automation utility program one after another.

Therefore, claim 1 of this request is considered not to
be inventive in the sense of Article 56 EPC 1973.

T 0659/11

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

werdekg
¥ sisch n
! pdischen p,, 7))
Q" ® e, /Q,
D & /"e/%/a

S

(ecours
des brevetg
[/E'a”lung aui®
Spieo@ ¥

(4]

oo™

®
© % ¥ %
&0, % & “A
QJQZJJU, Jop ac‘}"%\‘,aQb
eyy + \

B. Atienza Vivancos W. Sekretaruk

Decision electronically authenticated

