BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:
(A) [-] Publication in OJ

] To Chairmen and Members
] To Chairmen

] No distribution

Datasheet for the decision
of 17 October 2014

Case Number: T 0039/11 - 3.5.01
Application Number: 03723394.7
Publication Number: 1507211

IPC: GO6F12/14, GO6F9/44, HO04B7/26,
H04M1/00, H04M1/725
Language of the proceedings: EN

Title of invention:
COMMUNICATION DEVICE

Applicant:
NTT DoCoMo, Inc.

Headword:
Data access control/NTT DOCOMO

Relevant legal provisions:
EPC 1973 Art. 56

Keyword:
Inventive step - (no)

Decisions cited:
T 0641/00

EPA Form 3030 This datasheet is not p(?\rt of thg Dec151on?
It can be changed at any time and without notice.

9

Eurcpiisches
Patentamt
European
Fatent Office

office europien
des brevets

Case Number:

Appellan
(Applica

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

t:
nt)

Beschwerdekammern European Patent Office

D-80298 MUNICH

Boards of Appeal GERMANY
Tel. +49 (0) 89 2399-0
Chambres de recours Fax +49 (0) 89 2399-4465

T 0039/11 - 3.5.01

DECISTION

of Technical Board of Appeal 3.5.01

of 17 October 2014

NTT DoCoMo, Inc.

11-1, Nagatacho 2-chome,
Chiyoda-ku

Tokyo 100-6150 (JP)

Hoffmann Eitle

Patent- und Rechtsanwalte PartmbB
Arabellastrabe 30

81925 Miunchen (DE)

Decision of the Examining Division of the
European Patent Office posted on 15 July 2010
refusing European patent application No.
03723394.7 pursuant to Article 97 (2) EPC.

W. Chandler

P.
S.

Scriven
Fernidndez de Cdérdoba

-1 - T 0039/11

Summary of Facts and Submissions

IT.

ITT.

Iv.

This appeal is against the decision of the Examining
Division to refuse the European patent application No.
03723394.7.

The Examining Division decided on the basis of a main
request and four auxiliary requests. The fourth
auxiliary request was refused for lack of inventive
step in view of D2: Gong L: "Java security architecture
(JDK 1.2), version 1.0", 6 December 1998, retrieved
from the Internet on 9 July 2001.

In the statement setting out the grounds of appeal, the
appellant requested the grant of a patent based on a
main request, corresponding to the refused fourth
auxiliary request before the Examining Division, or
else on first or second auxiliary requests, filed with
the statement of grounds. The appellant requested oral
proceedings be held "in the event that refusal of the

application is contemplated."

In a communication accompanying a summons to oral
proceedings, the Board set out its preliminary opinion
that none of the requests appeared to involve an
inventive step in view of a number of Java programming
tools such as encapsulation and the access permissions

disclosed in D2.

With a letter dated 17 September 2014, the appellant
provided additional arguments in favour of inventive
step, and filed an amended first auxiliary request. The
first and second auxiliary request filed with the
grounds of appeal were maintained and renumbered as the

second and third auxiliary request, respectively.

VI.

VII.

-2 - T 0039/11

Oral proceedings before the Board took place on

17 October 2014 with the appellant present. The
appellant requested that the decision under appeal be
set aside and that a patent be granted on the basis of
the main request corresponding to the fourth auxiliary
request refused by the Examining Division, the first
auxiliary request filed on 17 September 2014, or the
second or third auxiliary request corresponding to the
first and second auxiliary requests filed with the

statement setting out the grounds of appeal.

Claim 1 of the main request reads:

"A communication device comprising:

a receiving means for receiving a program in byte

code;,

a specifying means adapted to specify data to be used
from among data stored in the communication device when

a program received by said receiving means 1s executed;

a first generation means for generating, when the
received program is to be executed, a perfect
encapsulated object having a method which is for
processing encapsulated data from an outside object,
the object having the encapsulated data specified by
said specifying means, and which is adapted to deny
access to said encapsulated data by said executed
program received by said receiving means, wherein the
generation means 1s for generating a perfect
encapsulated object or an imperfect encapsulated object
depending on a type designation information associated
with the specified data, said perfect encapsulated

object not having a method for authorizing access to

VIIT.

IX.

- 3 - T 0039/11

encapsulated data by an executed program;

an access control means for restricting accessible
resources, and prohibiting access to data specified by
said specifying means from among data stored in the

communication device."

The first auxiliary request adds to claim 1 of the main
request the feature that the imperfect encapsulated
object has at least one method for authorizing access

to encapsulated data by said executed program.

Claim 1 of the second auxiliary request differs from

the main request by the addition of the feature

"means comprised in an application manager, for
determining whether an object for processing said
specified data is a perfect encapsulated object or an
imperfect encapsulated object on the basis of type
designation information associated to the specified
data"

and by the slightly different definition of the first

generation means, as being

"comprised in said application manager, for
generating, when the received program 1s to be
executed, a perfect encapsulated object or an Iimperfect
encapsulated object on the basis of the determining of
said means for determining, wherein said perfect
encapsulated object is an object configured not to have
a method for authorizing access to encapsulated data by
an executed program and to have a method which is for
processing encapsulated data from an outside object,
the object having the encapsulated data specified by

said specifying means and which i1s adapted to deny

XT.

- 4 - T 0039/11

access to said encapsulated data by said executed
program received by said receiving means, and wherein
said imperfect encapsulated object is an object
configured to have at least one method for authorising

access to encapsulated data by said executed program".

The third auxiliary request differs from the main
request in that the communication device in claim 1

comprises an additional

"orogram determining means for determining whether
the received program is a downloaded Java application

or a native application",

and in that the specifying means is adapted to specify

"when the program determining means determines that
the program is a downloaded Java application, data to
be used from among data stored in the communication
device when a program received by said receiving means
is executed by analyzing the program content of the

Java application'.

The appellant's arguments, in so far as they are
relevant to the Board's decision, may be summarized as

follows:

The prior art allowed either full or no access to data

whereas the invention allowed something in between.

It was not known from the prior art to use "perfect
encapsulated objects". In object-oriented programming,
an object containing private data fields would

typically include methods for accessing the data.

It was not known to use encapsulation for data

- 5 - T 0039/11

protection purposes. The motivation behind
encapsulation in object-oriented programming was
normally to protect code from accidental corruption,
and not to protect data from malicious code. Using
perfect encapsulated objects to prevent access to phone

data would, therefore, be hindsight.

The "specifying means”" in claim 1 specified the data to
be used by analysing the program content of the
downloaded application. The analysis was performed
before the app was executed. The same was true for the
generation of the encapsulated objects. This was not
known from the prior art, and had the effect of

avoiding delays at run-time.

XIT. At the end of the oral proceedings, the Board announced

its decision.

Reasons for the Decision

1. The invention

1.1 The invention concerns the protection of sensitive
data, such as the user's address book and telephone
numbers, stored in a mobile phone. It would be a
security risk if this information were freely
accessible to downloaded Java applications (apps) that

could try to steal data.

1.2 The invention seeks to overcome this by providing the
phone data in an encapsulated object (figure 5). In

this way, downloaded apps may not access the data

- 6 - T 0039/11

directly, but may only interact with encapsulated data
via the public methods provided in the object. The
invention uses two types of encapsulated object:
"perfect encapsulated objects" and "imperfect
encapsulated objects" (see point 2.9 for details). The
type of encapsulation depends on the type of data to be
encapsulated. For example, the address book is
particularly sensitive, and, therefore, is provided in
a "perfect encapsulated object" (see application at

page 11, lines 9-24).

Main request - claim 1

The Board takes a mobile phone capable of downloading
an executing Java apps as the starting point for the
invention. It is common ground that such devices were
prior art at the date of the invention (see the

application at page 1, lines 10-14)

Java 1s an object-oriented programming language. A
fundamental concept in all object-oriented programming
is encapsulation. The idea is to make data fields
private within the class that declares them, and to

provide access, if at all, via public methods.

Apart from encapsulation, Java makes use of "the
sandbox model" (see for example D2, section 1.1. "The
Original Sandbox Model"). The essence of this model is
that native applications are trusted to have full
access to system resources, such as files, while
downloaded apps are not trusted and are only allowed to
access a limited set of resources inside the

"sandbox" (see also the application, page 1, line 25 to

page 2, line 1).

-7 - T 0039/11

In view of this prior art, the Board considers that the
following features of claim 1 were known in

combination:

A communication device comprising:

A "receiving means for receiving a program in byte
code". Here, "byte code" refers to compiled code that

runs on the Java Virtual Machine.

A "specifying means adapted to specify data to be used
from among data stored in the communication device when
a program received by said receiving means is
executed". The Board considers the specification of

data to be implicit in any program.

A "generation means for generating [an] encapsulated
object having a method which is for processing
encapsulated data from an outside object, the object
having the encapsulated data specified by said
specifying means”". This is nothing more than an
encapsulated object having some data from the phone and

at least one method.

An "access control means for restricting accessible
resources, and prohibiting access to data specified by
said specifying means [...]". The Board considers that
encapsulation is in itself an "access control means"
that falls under the definition in claim 1. Access
control to data is, furthermore, provided both by the

operating system and by the Java sandbox model.

The appellant argued that the definition of the
"specifying means" in claim 1 implied an analysis,
before the app was run, of the Java app in order to

identify the data that was going to be used.

- 8 - T 0039/11

Encapsulated objects were also generated before the app
was run. This was different from the known Java
execution environment, in which the objects were

generated at run-time.

In the Board's view, however, the wording "when a
program is [...] executed" rather implies that the
specifying of the data and the generation of the
objects take place at run-time, as in the prior art. In
that context, the wording "when ... 1is to be executed"
in the definition of the generation means does not

imply encapsulation before run-time.

It follows that the prior art set out above discloses
the whole subject-matter of claim 1, except for the
generation of a "perfect encapsulated object" or an
"imperfect encapsulated object", depending on the type
of data.

Claim 1 defines a "perfect encapsulated object" as
having "a method which is for processing encapsulated
data from an outside object" but not "a method for
authorizing access to encapsulated data by an executed
program". The appellant explained that, while an
imperfect encapsulated object has a method which
returns the encapsulated data to the object that
invoked the method (e.g. getBytes()), a perfect
encapsulated object does not contain any such method. A
perfect encapsulated object only contains methods which
will do something with the encapsulating data at the
invoking object's request, such as displaying it on the
screen (e.g. drawString()), and so provide access in
some broader sense. The Board considers the appellant's
interpretation to be a reasonable one that falls under
the terms of the claim, and that is supported by the
application as filed (e.g. page 18, line 29 to page 19,

.10

11

.12

-9 - T 0039/11

line 25; figures 6 and 7). Therefore, the Board accepts
this interpretation for the purpose of assessing

inventive step.

Thus, the distinguishing features of the invention are
directed to providing more or less access to
encapsulated data, depending on the type of data. This
is essentially the Examining Division's reasoning in

the decision under appeal.

In the Board's view, the aim of protecting sensitive
information is not technical, and may legitimately
appear in the formulation of the technical problem (T
641/00 - "Two identities/Comvik"™, OJ EPO 2003, 352).
Therefore, the Board considers that the problem solved
by the invention is controlling access to data stored
in the communication device, in the light of the non-

technical requirement of protecting sensitive data.

The skilled person, who is a Java programmer, would
inevitably have had to consider how to define her
objects/classes, including which forms of access to
give to encapsulated data, i. e. which accessor methods
to provide, depending on the desired functionality and
degree of protection. If "get"-access to a particular
type of data is not desired for security reasons, the
Board's opinion is that it would be self-evident to

exclude methods such as getByte().

The appellant argued that the purpose of using
encapsulation in object-oriented programming was
different from that achieved by the invention.
According to the appellant, the motivation behind
encapsulation was normally to protect code from

accidental corruption, and not to protect data from

.13

.14

- 10 - T 0039/11

malicious code. In other words, 1t was not known to use

encapsulation for data security purposes.

In the Board's view, however, the access control in
claim 1 is not limited to any particular purpose or
intention. Indeed, the difference between malicious
code and unintentionally erroneous code lies entirely
in the mind of the programmer writing the code. The
Board considers that the general idea behind
encapsulation is to protect the object's data
components from access by unauthorized code defined
outside the class, and that the skilled person would
have considered it as a means to protect sensitive data

stored in the mobile phone.

Thus, in the Board's judgement, the subject-matter of
claim 1 does not involve an inventive step (Article 56
EPC 1973) in view of a communication device comprising

the standard Java environment.

First auxiliary request - claim 1

Claim 1 provides a definition of the "imperfect
encapsulated object" as "having at least one method for
authorizing access to encapsulated data by said
executed program". The Board understands this to mean
that an imperfect encapsulated object has a accessor

method such as getBytes().

The Board's analysis of the main request takes account
of just such a definition. As a consequence, claim 1 of
the first auxiliary request lacks inventive step
(Article 56 EPC 1973) for the same reasons as claim 1

of the main request.

- 11 - T 0039/11

Second auxiliary request - claim 1

Claim 1 of the second auxiliary request differs from
the first auxiliary request essentially only in that
the generation means is comprised in an "application

manager".

The applicant argued that the "application manager"
referred to a Java application manager (JAM) which was
run when a program to be executed was designated from a
program list (see the application, page 22, lines 6-9).
This feature was said to further clarify that the
encapsulated objects were generated before the

downloaded application was executed.

The Board sees the amendment as giving a name to what
was necessarily already there. Therefore, the second
auxiliary request does not provide any features over
the previous requests, which could establish an
inventive step (Article 56 EPC 1973).

Third auxiliary request - claim 1

Claim 1 according to the third auxiliary request makes
a distinction between "downloaded Java applications"
and "native applications". The encapsulated objects are

generated for data to be used by downloaded apps.

However, the Java sandbox model is based on the same
distinction between native applications (local code)
and downloaded applications (remote code). Therefore,
this feature of the third auxiliary request does not

add anything new.

- 12 - T 0039/11

Claim 1 also defines that the specifying means specify
data "by analyzing the program content of the Java
application". The appellant explained, in the oral
proceedings, that this was done by looking at the
function calls within the program, before the program
was executed. The appellant argued that this pre-

analysis had the effect of avoiding delays at run-time.

The application does not contain any details as to how
the analysis of the program content is to be carried
out, so the Board assumes that this was well known.
Furthermore, the effect of this feature is not a
reduction in complexity; the processing is merely
offset to an earlier stage, which is just why compiled
programs have the same advantage over interpreted ones.
In the case of Java byte code, the Java virtual machine
checks type constraints before issuing instructions to
the processor, thus generating run-time objects. It is,
therefore, the Board’s view that pre-analysis is, at

best, a standard alternative.

In conclusion, claim 1 of the third auxiliary request
does not contain any feature that establishes an
inventive step over the known communication device
providing a standard Java environment. The third
auxiliary request is therefore not allowable for lack
of inventive step (Article 56 EPC 1973).

Since there is no allowable request, the appeal must be

dismissed.

T 0039/11

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

oW erdeky m
aischen p,
%Qf.’:, {(’\)(o Aty /][9070»
o N3 % P
N
N % ®
33 " Zo
s Qo
o5 g3
3
22 s&
% NS
© %“’/) ‘SQPA\
L% N S
LT NN
Py P *\e®

eyy + \
T. Buschek W. Chandler

Decision electronically authenticated

