BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:
(A) [-] Publication in 0OJ

(B) [-] To Chairmen and Members
(C) [-] To Chairmen
(D) [X] No distribution
Datasheet for the decision

of 21 February 2014
Case Number: T 2205/10 - 3.5.06
Application Number: 03767540.2
Publication Number: 1563370
IPC: GO6F9/44
Language of the proceedings: EN

Title of invention:
MODELING SYSTEM FOR GRAPHIC USER INTERFACE

Applicant:
SAP AG

Headword:
GUI modeling/SAP

Relevant legal provisions:
EPC Art. 83

Keyword:
Sufficiency of disclosure - (no)

Decisions cited:

Catchword:

EPA Form 3030 This datasheet is not p(?\rt of thg Dec151on?
It can be changed at any time and without notice.

Europilsches Beschwerdekammern gugggggnMPLja'EﬁgtHOffice
0) Friens e Boards of Appeal CERUANY o

ffice européen . -

oot Chambres de recours Fax +49 (0) 89 2399-4465

Case Number: T 2205/10 - 3.5.06

DECISTION
of Technical Board of Appeal 3.5.06
of 21 February 2014

Appellant: SAP AG
(Applicant) Dietmar-Hopp-Allee 16
69190 Walldorf (DE)

Representative: Miller-Boré & Partner Patentanwdlte PartG mbB
Friedenheimer Briicke 21
80639 Miunchen (DE)

Decision under appeal: Decision of the Examining Division of the
European Patent Office posted on 30 June 2010
refusing European patent application No.
03767540.2 pursuant to Article 97 (2) EPC.

Composition of the Board:

Chairman: D. Rees
Members: S. Krischer
M.-B. Tardo-Dino

-1 - T 2205/10

Summary of Facts and Submissions

IT.

ITT.

Iv.

The appeal is directed against the decision of the
examining division, posted on 30 June 2010, to refuse
the application 03767540 for lack of inventive step of
the main request and for lack of clarity of the
auxiliary request. The following document was cited in

relation to inventiveness:

D1 US 2001/45963 Al, 29 November 2001

In an obiter dictum of the decision, it was objected
that there also was a lack of inventive step of the

auxiliary request.

A notice of appeal was received on 18 August 2010. The
fee was received on 19 August 2010. A statement of the
grounds of appeal was received on 13 October 2010.
Claim sets of a main and an auxiliary request were

filed. Oral proceedings were requested.

In its summons to oral proceedings, the board gave
reasons for its preliminary opinion that the
application suffered from a lack of clarity of its
claims (Article 84 EPC) and a lack of disclosure as to
how the invention claimed is to be carried out
(Article 83 EPC). Furthermore, the board was
provisionally of the opinion that claim 1 of the two

requests lacked an inventive step (Article 56 EPC).

In a letter dated 21 January 2014, the appellant filed

a claim set of a second auxiliary request.

Oral proceedings were held on 21 February 2014. At

their end, the board announced its decision.

VI.

VII.

-2 - T 2205/10

The appellant requests that that the decision under
appeal be set aside and that a patent be granted on the
basis of claims 1-10 of the main request (corresponding
to the main request of the appealed decision) or of the
first auxiliary request (slightly differing from the
auxiliary request refused by the examining division),
both filed with the grounds of appeal, or of the third
auxiliary request filed on 21 January 2014, description
pages 2, 34 as filed on 18 June 2007, pages 1, 3-33,
35-39 as originally filed, (corrected) drawing

sheets 1-23 as published on 24 March 2005.

Claim 1 of the main request reads as follows:

"l. A computer-implemented method for generating a
user interface (220), the user interface (220) being
configured for use in a client-server environment, the
method comprising:

providing an editor (311) for designing a visual
representation (310) of a user interface model, the
visual representation (310) being a drawing that
specifies functions the user interface (220) is
supposed to perform,

the editor (311) providing a workspace (804) and a
task panel (808) to be displayed on a display device on
a client system, the workspace (804) being provided to
design the visual representation (310) thereon, the
task panel (808) providing a plurality of elements for
use in designing the wvisual representation (310), one
or more of the elements being associated with a server
system remotely located from the client system; and

the editor (311) translating the wvisual
representation (310) to a machine-readable canonical
representation (320), and then

translating the canonical representation (320) into

user interface code (330)."

VIIT.

IX.

- 3 - T 2205/10

Claim 1 of the first auxiliary request differs from
claim 1 of the main request in that the last two
paragraphs of claim 1 of the main request are replaced

by (differences marked in italics):

"the editor (311) translating the visual
representation (310) to a machine-readable canonical
representation (320) in the form of GUIMachine Language
(GML), and then

translating the canonical representation (320) into
user interface code (330),

wherein the canonical representation (320) enables
providing a structured user interface modelling system
repository (321) for the user interface model, the
repository serving as a source for code generation
tools and producing a semantically rich source of user
interface knowledge that is exploitable by secondary
tools, and

wherein the canonical representation includes three
main layers comprising an information layer (701)
defining the information objects that can be received
or sent to an underlying back-end application and the
functions that can be called, an interaction model
layer (703) defining the types of users that are
expected to use the user interface, the tasks that they
are supposed to accomplish by using the user interface,
and the specific user interface dialogues that are
required for carrying out each task, and a presentation
model layer (705) defining how a user interface will

appear, lincluding topology, geometry, and styling."

Claim 1 of the second auxiliary request reads as

follows (wording added to the main request marked in

italics; deletions are struvek—through) :

- 4 - T 2205/10

"l. A computer-implemented method for generating a
user interface (220), the user interface (220) being
configured for use in a client-server environment, the
method comprising:

providing an editor (311) for designing a visual
representation (310) of a user interface model,

- the visual representation (310) being a
drawing that specifies functions the user
interface (220) is supposed to perform,

- the editor (311) providing a workspace (804)
and a task panel (808) to be displayed on a
display device on a client system,

- the workspace (804) being provided to design
the visual representation (310) thereon,

- the task panel (808) providing a plurality of
elements for use in designing the visual
representation (310), one or more of the elements
being associated with a server system remotely
located from the client system;

creating the visual representation (310) using the
editor (311),; and

£k et 3+1+) translating, by the editor (311),

T CK/L:L

the visual representation (310) into an XML-based
maehine—readablte canonical representation (320), and
then

translating the canonical representation (320) into

executable user interface code (330)."

Each request also includes a corresponding independent

system and "computer readable medium" claim.

- 5 - T 2205/10

Reasons for the Decision

1. Overview

1.1 The application relates to generating a graphical user
interface (GUI) by a user with the help of an editor.
The user enters a visual representation of the GUI to
be modelled by using the GUI of the editor ([70] of the
original description). A visual representation is
- according to the description - a tree of nested
diagrams ([97]) or a drawing specifying the functions
of the GUI ([72]; claim 1 of all requests). See
figures 10A and 11A for two examples of visual
representations. The editor translates the wvisual
representation to an "XML-based canonical
representation" ([74]; claim 1 of the second auxiliary
request). Examples for canonical representations are
found in figures 10B and 11B, corresponding to
appendices A and B of the description. Then, the
canonical representation is translated to executable
GUI code ([70], [771, [168], [169]; figure 3B; claim 1

of the second auxiliary request).

1.2 The application suffers from a lack of disclosure as to
how the invention claimed is to be carried out
(Article 83 EPC).

2. Admissibility of the second auxiliary request

Since this request clearly represents an attempt to
overcome the clarity objections (Article 84 EPC) noted
in the summons (4.2, 4.4) and does not raise any new

issues, it is admitted to the procedure.

- 6 - T 2205/10

Insufficient disclosure

During the oral proceedings before the board,
insufficient disclosure was discussed first, being the
most fundamental objection. Once the board came to the
conclusion that the disclosure was indeed insufficient,
discussions about clarity and inventive step were
superfluous. Since these issues were not dealt with in
the oral proceedings, they will likewise not be

considered in what follows.

After having discussed at length the sufficiency of the
disclosure with respect to claim 1 of the second
auxiliary request, the board stated that it considered
this claim to be the most concrete one with respect to
the canonical representation (with the characterisation
"XML-based"; without the unclear expression "machine-
readable") compared with claim 1 of the main and the
first auxiliary request. Therefore, if the invention as
claimed in the second auxiliary request were
insufficiently disclosed, then this would also be the
case for the main request and the first auxiliary
request.

The appellant accepted that this was the situation.

Thus, the following objections and arguments relate to
claim 1 of the second auxiliary request. They concern

the three main elements of the claim:

o the visual representation
o the XML-based canonical representation
o the two translations: visual representation

-> canonical representation -> executable GUI code

-7 - T 2205/10

According to the appellant during the oral proceedings,
the visual representation is generated by dragging and
dropping symbols from the task panel (the right box in
figure 11A) to the workspace (the big box at the left).
The available symbols are shown in figure 4 (see
[100]). This defines and constrains the possible visual
representations. For example, in figure 11A the boxes
"Bank Getlist" (1106) and "Bank Getdetail" (1110)
have been added and in-/out-connected with other added
boxes, e.g. with the box "Search Form" (1104) (see
also [171]). The editor has predefined XML code
portions for each symbol of figure 4. When a symbol is
dragged from the task panel and dropped into the
workspace, the corresponding XML code portion is
inserted into the canonical representation. For
example, in appendix B of the description which shows
the canonical representation of figure 11A, one can
find the strings "Bank Getlist" (middle of page 38)
and "Bank Getdetail" (bottom of page 37) together with
their parents, position, size and in-/out-connections.
Then, the canonical representation is translated to
executable GUI code according to the skilled person's
general knowledge about translating and generating GUI
code.

The core of the invention is to create visually the
visual representation, to translate it into the
canonical representation and then into executable GUI

code for possibly several platforms.

The board is not convinced by these explanations.
Paragraph [100] does not state that figure 4 discloses
an exhaustive set of the symbols which are the
primitives to build the formal language of the visual
representations and, indeed, indicates that other

"symbolic vocabularies" may be used. In fact, the

- 8 - T 2205/10

symbols used for "Bank Getlist" (1106) and

"Bank Getdetail" (1110), i.e. boxes with convex curves
as the top and the bottom edges, are not contained in
the symbol set of figure 4. On the other hand, the
application also does not disclose what is the minimal
set of necessary symbols to form the wvisual

representation language.

According to the appellant, this is left to the skilled
person: If he does not want to have list boxes in his
implementation, he does not use them. Further, the
skilled person could decide to implement a very simple
GUI, e.g. only creating a window with an "OK"-button
and an "exit"-button. At least this would be, according

to the appellant, sufficiently disclosed.

Firstly however the application indicates that the
symbols given in figure 4, and what they represent, are
not necessarily meant to be a matter of common general
knowledge, for example "scenario", "scene" or "actor".
And the board judges that after having read the
description of them in the application (e.g. [108],
[118], [123]), the skilled person would still not know
what a GUI to be generated for them should look like.
As to the second argument, the generally known GUI
widgets such as buttons, menu bars, text display boxes
or text entry fields simply do not appear in figure 4.
Therefore, a skilled person is not even able to
implement the claimed method restricted to very simple

GUIs without departing from what is disclosed.

The application does not describe a mere GUI builder
which allows a designer to compose the aforementioned
generally known GUI widgets in one or more windows.

Instead the application introduces high-level, abstract

.10

-9 - T 2205/10

metaphors or concepts like scenario, scene, actor, bag
or cluster (figure 4), but fails to sufficiently
disclose their technical meaning, technical
implications and their implementation. What is missing
is the nature of the GUI elements which should be
generated for each of the symbols in figure 4.
Paragraphs [100]-[136] describing the symbols of
figure 4 do not deliver this information. And among the
figures, there is only one single example of a
generated GUI, presented almost identically on three
figures: one showing a default layout without data in
the output fields during the editing phase (figure 12;
[180]), one showing a preview with data (figure 13;
[181]) and the final version using the executable GUI
code (figure 16; [181]). But one example is certainly
not enough to illustrate all the symbols of figure 4,
their underlying technical concepts and their

visualisation.

The board considers not only the general view (i.e. the
relationship between symbols and GUIs) to be insuffi-
ciently disclosed, but also the bridging steps of
building an intermediate language (the XML-based
canonical representation), of translating the symbols
to that language and of translating the latter to

executable GUI code.

As to the XML-based canonical representation, the term
"canonical" generally designates some kind of standard
form, i.e. a unique form for every object. Assuming
that the term "canonic" is meant to be synonymous to
"canonical" in the description, there is indeed a
passage in the description ([70], last but one

sentence) disclosing that the visual representation is

11

.12

.13

.14

T 2205/10

converted to a single canonic representation. But the

next paragraph ([71], last sentence) reads:

"In certain instances, a visual representation may
be converted to a plurality of canonic represen-
tations prior to generating a plurality of user
interface codes." (emphasis added)

This contradicts the interpretation of "canonical” to
mean "standard form". But even if one assumes that the
canonical representation is a standard form, there is
no disclosure how to make the corresponding XML-based
representation unique for any given visual represen-
tation.

Thus, the application does not define what is meant by
"canonical" in this context, so that the skilled person
implementing the invention would not know whether a
particular representation he wants to choose is

canonical or not.

As to the characterisation of the canonical represen-
tation as being "XML-based", it is well-known that the
so-called Extensible Markup Language (XML) 1is
essentially a framework in which a programmer can
formulate his own XML language instance. He has to give
a formal definition for his XML instance, for example a

so—called XML schema. There are tools available which

generate from an XML schema
conformity of XML documents

parse them according to the

However,

schema. The only disclosure

programs to validate the
with the schema, or to

schema.

the application fails to disclose such an XML

of the XML-based canonical

representation are appendices A and B and figures 10B,

.15

.16

.17

.18

- 11 - T 2205/10

11B and 14, all of them relating to the visual repre-
sentation in figure 11A (or its first development state
in figure 10A). Notwithstanding the fact that large
parts of these appendices are literally incompre-
hensible, absent further explanation, the board
considers that one example of a visual representation
and its corresponding XML-based canonical represen-
tation cannot provide a skilled person with sufficient
information to enable him to create a whole XML

language instance or its XML schema.

During oral proceedings, the appellant stated that a
skilled person knows how to create a suitable XML

instance and a corresponding XML schema.

The board agrees that a skilled person is able to

create an XML schema if he has a specification of what
should be modeled by the language. As stated above, the
board does not see enough disclosure of the underlying

technical concepts to create such a specification.

Furthermore, the XML-based canonical representation as
well as the visual representation belongs to the core
of the invention according to the appellant during oral
proceedings. The board cannot see that a skilled person
could develop such an important part of the invention
by himself without the exercise of inventive activity,
the latter being a prerequisite to sufficient

disclosure.

As to the first translation from the visual represen-
tation to the XML-based canonical representation, there
is not even one example of a predefined XML code por-
tion to be included in the canonical representation

when dragging and dropping symbols from the task panel

.19

.20

.21

.22

- 12 - T 2205/10

to the workspace. Nor is there any hint that the
translation should be implemented in this way. The
board has furthermore doubts that the creation of the
canonical representation could function in such an easy
way, since for example the GUI logic has to be

expressed in some way in the canonical representation.

The appellant stated that paragraph [161], last but one
sentence disclosed that the the canonical represen-
tation ("GML code") is automatically generated by the
modeling system ("GM Storyboard"). Therefore the GUI

logic is contained in the canonical representation.

The board notes that somehow the claimed method has to
infer what the GUI logic is. A passage merely stating
that this is done automatically does not help the

skilled person to work out how this is done.

As to the appellant's argument that at least one XML
schema for representing diagrams is well known, the
board does not doubt this. However, merely representing
a diagram does not mean that the XML schema can express
the logic of the GUI to be generated, or that it is

suitable to be translated into executable code.

As to this second translation from the XML-based
canonical representation to executable GUI code, the
appellant wrote in his letter dated 21 January 2014
(page 4, paragraph 3):

"Similarly, translating an XML based represen-

tation into executable code would be immediately

understandable for the skilled person from the
present application. For example, such a

translation may be carried out using Extensible

.23

.24

.25

.26

- 13 - T 2205/10

Stylesheet Language Transformations (XSLT). This
is a known way of transforming XML documents into
other objects, and can also be used to generate
intermediate code (e.g. Java Byte code) or

executable code."

During the oral proceedings, the board pointed out that
XSLT is generally known to be a turing-complete
programming language. SO, one can program every
computable method in XSLT, including a translation from
the canonical representation to executable code. The
question is how to do it, i.e. what is the program in
XSLT which transforms a particular visual represen-
tation into executable code. The application doesn't
even mention XSLT, let alone explain how it would be

generated.

The appellant argued that figure 15 disclosed an

example of GUI code in the Java programming language.

However, the board was not convinced that a very small
portion of a Java program would give enough information
to the skilled person to translate canonical

representations in general into executable code.

The board notes that Rule 42 (1) (e) EPC defines one task
of a patent description as being to "describe in detail
at least one way of carrying out the invention claimed,
using examples where appropriate and referring to the
drawings, 1f any". It follows that if the board points
out that details are missing in the description, it is
up to the appellant to show that the missing parts are
common general knowledge. This the appellant has failed
to do in the present case: There is not enough

disclosure of the diagrammatic visual representation

.27

- 14 - T 2205/10

language, of the XML-based canonical representation
language and of the two translation steps yielding

executable code.

Therefore, the invention as claimed in the second
auxiliary request and thus (as argued above) in all
requests 1s insufficiently disclosed in contravention
of Article 83 EPC.

T 2205/10

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

oW erdeky m
aischen p,
%Qf.’:, {(’\)(o Aty /][9070»
o N3 % P
N
N % ®
33 " Zo
s Qo
o5 g3
3
22 s&
% NS
© %“’/) ‘SQPA\
L% N S
LT a8
Py P *\e®

eyy + \
T. Buschek D. Rees

Decision electronically authenticated

