BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:
(A) [ -] Publication in 0OJ

(B) [ =] To Chairmen and Members
(C) [ -] To Chairmen
(D) [ X ] No distribution
Datasheet for the decision

of 16 June 2015
Case Number: T 1723/09 - 3.5.07
Application Number: 04793918.6
Publication Number: 1671248
IPC: GO6F17/30
Language of the proceedings: EN

Title of invention:

A system, a method and an apparatus for importing text data
into a database

Applicant:
Schlumberger Holdings Limited
Services Pétroliers Schlumberger

Headword:
Spreadsheet loader/SCHLUMBERGER

Relevant legal provisions:
EPC Art. 56, 123(2)

Keyword:
Inventive step - main request (no)
Amendments - added subject-matter (yes) - auxiliary request

Decisions cited:

Catchword:

EPA Form 3030 This datasheet is not p(?\rt of thg Dec151on?
It can be changed at any time and without notice.



Europilsches Beschwerdekammern gugggggnMPLja'EﬁgtHOffice
0) Friens e Boards of Appeal CERUANY o

ffice européen . -

oot Chambres de recours Fax +49 (0) 89 2399-4465

Case Number: T 1723/09 - 3.5.07

DECISTION
of Technical Board of Appeal 3.5.07
of 16 June 2015

Appellant: Schlumberger Holdings Limited

(Applicant 1) P.0O. Box 71,
Craigmuir Chambers

Road Town, Tortola (VG)

Appellant: Services Pétroliers Schlumberger
(Applicant 2) 41, rue Saint Dominique
75007 Paris (FR)

Representative: Osha Liang
2, rue de la Paix
75002 Paris (FR)

Decision under appeal: Decision of the Examining Division of the
European Patent Office posted on 11 March 2009
refusing European patent application No.
04793918.6 pursuant to Article 97 (2) EPC.

Composition of the Board:

Chairman R. Moufang
Members: M. Rognoni
P. San-Bento Furtado



-1 - T 1723/09

Summary of Facts and Submissions

IT.

ITT.

Iv.

The applicants (appellants) appealed against the
decision of the Examining Division to refuse European

patent application No. 04793918.6.

In the decision under appeal the Examining Division
considered that claim 1 according to the main request
filed in electronic form on 16 January 2009 did not
involve an inventive step with respect to the following

prior art:

D3: Durbin J. et al., "ORACLE 8 Utilities",
Release 8.0, December 1997.

Furthermore, the Examining Division held that claim 1
according to the auxiliary request, also filed on

16 January 2009, did not comply with Articles 123 (2)
and 84 EPC, and that its subject-matter did not involve

an inventive step with respect to document D3.

With the statement of grounds of appeal, the appellants
submitted a new main request and a new auxiliary
request, and requested that the decision under appeal
be set aside and a patent be granted on the basis of
the new main request or, alternatively, on the basis

the new auxiliary request.

With letter dated 18 December 2014, the appellants were
summoned to oral proceedings to be held on
16 June 2015.

In a communication pursuant to Article 15(1) RPBA dated
2 April 2015, the Board expressed the preliminary view
that the subject-matter of claim 1 according to the

main request did not appear to involve an inventive



VI.

VII.

VIIT.

-2 - T 1723/09

step within the meaning of Article 56 EPC and that
claim 1 according to the auxiliary request appeared to
comprise subject-matter extending beyond the content of
the application as filed (Article 123(2) EPC).

In reply to the Board's communication, the appellants,
with letter dated 9 June 2015, informed the Board that
they would not attend the oral proceedings.

Oral proceedings were held on 16 June 2015 in the
absence of the appellants. At the end of the oral
proceedings, the chairman pronounced the Board's

decision.

Claim 1 according to the main request reads as follows:

"An apparatus for loading data representing a well in
the exploration and production domain from a
spreadsheet dataset (20) into a database (35),
comprising:

a) a control file (30) containing a set of rules
(100) wherein each rule describes how to parse the
data and includes a condition (125) which is a
logical state that must evaluate to true if a rule
is to be processed;

b) a spreadsheet loader (10) having as inputs the
spreadsheet dataset (20) having data representing
the well in the form of one or more records and
the control file (30), wherein each rule (100) in
the control file (30) is evaluated for each record
(21) to determine if the condition is true for
that record,

wherein the control file includes rules further
comprising
i) a parsedescriptor (130, 220) used to parse

the record by breaking it into either a



- 3 - T 1723/09

single or an array of tokens if the
condition (125) 1is true;

ii) a value clause (135, 230) that references
which of the tokens parsed using the
parsedescriptor is assigned as a value,

the parsed, valued data being loaded into the database
(35) by the spreadsheet loader (10)."

Claim 1 according to the auxiliary request reads as

follows:

"An apparatus for loading data representing a well in
the exploration and production domain from a
spreadsheet dataset (20) into a database (35),
comprising:

a) a control file (30) containing a set of rules
(100) wherein each rule describes how to parse the
data and includes a condition (125) which is a
logical state that must evaluate to true if a rule
is to be processed;

b) a spreadsheet loader (10) having as inputs the
spreadsheet dataset (20) having data representing
the well in the form of one or more records and
the control file (30), wherein each rule (100) in
the control file (30) is evaluated for each record
(21) to determine if the condition is true for
that record,

wherein the control file comprises a mixture of
variable rules (110) and entity rules (120), wherein
said variable and entity rules each comprise
i) a parsedescriptor (130, 220) used to parse
the record by breaking it into either a
single or an array of tokens if the
condition (125) 1is true;
ii) a value clause (135, 230) that references

which of the tokens parsed using the



IX.

- 4 - T 1723/09

parsedescriptor is assigned as a value, the
parsed, valued data being loaded into the
database (35) by the spreadsheet loader (10)

and wherein

the variable rule (110) is used to read a record from
an input text file and stores the parsed, wvalued data
in a variable to be used later in an entity rule or in

a condition of another rule and

the entity rule (120) further comprises an
attributelist (145) with a list of attributes (200)
that refer to an object to be created and are defined
on the database (35) into which the spreadsheet loader
will load the parsed valued data, wherein the entity
rule further describes how the attributes are set using
the parsed, valued data stored in the variable rule or

a record read from an input text file."

Both requests comprise a further independent claim
directed to a "method for loading data representing a
well in the exploration and production domain from a
spreadsheet dataset (20) into a database (35)". As the
independent method claims are not relevant to the

present decision, their wording need not be specified.

The appellants' arguments, submitted with the statement

of grounds of appeal, may be summarised as follows:

The apparatus defined by claim 1 according to the main
request was novel over document D3 first of all because
data in the spreadsheet dataset represented a well in
the exploration and production domain. Furthermore, as
it appeared from the example of the ORACLE SQL loader
utility described on pages 5.44 and 5.45 of document
D3, the INTO TABLE statements, which corresponded to



- 5 - T 1723/09

the rules in the control file according to the
invention, did not include a combination of a
"parsedescriptor" and a "value clause" as specified in

claim 1 of the main request.

As shown by the control file for example 1 in paragraph
[00034] of the published application, the
parsedescriptor defined how to read the records,
consisting of tokens, in the text file and, in
particular, specified the character used to separate
the tokens. Once the tokens were read, the value clause
for each attribute identified the token (i.e. the
value) in the incoming data record to be assigned to
that attribute. For instance, in the given example
token 2 was selected for the attribute "UBHI" and

token 1 for the attribute "Driller PBTD".

Thus, the apparatus according to claim 1 required
firstly that each record was evaluated and parsed into
one or more tokens if the condition specified by the
WHEN clause was true, and secondly that a value clause
identified which of the parsed tokens was assigned as a
value, so that only the parsed, valued data was loaded
into the database by the spreadsheet loader. This
differed from the disclosure of document D3 where each
record, capable of being correctly parsed, was parsed
and loaded into the database.

The specific features which distinguished the present
invention from the Oracle SQL loader described in
document D3 allowed to load any text data in
spreadsheet format, including row-based data and
column-based data. In fact, the SQL loader disclosed in
document D3 could only read row-based data since
records which met the WHEN conditional clause were

directly loaded into the database and could not be



- 6 - T 1723/09

selectively put on hold using the combination of
parsedescriptor and value clause of the present
invention. As the prior art did not mention this
technical effect, the apparatus according to claim 1

involved an inventive step.

The subject-matter of claim 1 according to the
auxiliary request also involved an inventive step over
the cited prior art for the same reasons given with
respect to the main request and furthermore because the
control file included a mixture of variable and entity

rules.

As explained in paragraph [00032] of the published
application, a variable rule was used to read a token
from data in the form of an input text file and store
it as a variable after it had been parsed and assigned
as a value using a corresponding value clause. Then,
the stored parsed data was used in either an entity
rule or in a condition of another rule. The use of the
entity rule was to describe the object to be created
and list its attributes. In particular, the entity rule
described how the attributes were set using the parsed,
valued data stored in the wvariable rule, or using
directly a token which was read from the input text
file.

The technical effect of the control file having a
mixture of variable and entity rules was to enable the
loading of any format, including row-based and column-
based formats, and the loading of the data in the

database.

Hence, the subject-matter of claim 1 of both requests

satisfied the requirements of Article 56 EPC.



-7 - T 1723/09

Reasons for the Decision

1. The appeal is admissible.

2. As specified in paragraph [0002] of the published
application, the present invention is concerned with

the problem of loading text data into a database.

According to paragraph [0004], data to be loaded (i.e.
a "dataset") is usually encoded in binary or text
(ASCII) format and contained in an external storage
unit. Also in the o0il and gas industry it is known to
use a software program (a "loader") to read, decode and
load sets of data written in various formats into
database tables, whereby custom loaders are written to
read specific industry standard formats and load data

in a specific repository.

However, it is noted in the description (ibid.
paragraph [0005]) that there is a large amount of data
in text files for which no standard exists and which

may contain data in any format.

2.1 In view of the above scenario, apparently typical in
the 0il and gas industry, the present invention seeks
to provide an apparatus and a method for loading data,
especially in non-standard text files, into a database
(cf. paragraph [0006]). The data considered in the
application is defined as a "spreadsheet dataset"” and

may be "row-based" or "column-based".

2.2 The gist of the present invention consists essentially

in providing a control file containing a set of rules,



- 8 - T 1723/09

which describe how to parse and map the data in the
dataset.

Main request

3. Claim 1 according to the main request relates to an
apparatus for loading data representing a well in the
exploration and production domain from a spreadsheet

dataset into a database.

The apparatus comprises:
(a) a control file containing a set of rules wherein
(x) each rule describes how to parse the data
and
(xi) (each rule) includes a condition which is a
logical state that must evaluate to true if

a rule is to be processed;

(b) a spreadsheet loader having as inputs:

(x) the spreadsheet dataset having data
representing the well in the form of one or
more records and

(x1)the control file,

(xii)wherein each rule in the control file is
evaluated for each record to determine if
the condition is true for that record,

(xiii)wherein the control file includes rules

further comprising:

(xiv)a parsedescriptor used to parse the record
by breaking it into either a single or an
array of tokens if the condition is true;

(xv)a value clause that references which of the
tokens parsed using the parsedescriptor is

assigned as a value;



-9 - T 1723/09

(c) the parsed, valued data being loaded into the
database by the spreadsheet loader.

Claim 1 according to the main request on file differs
from claim 1 of the main request considered by the
Examining Division essentially in that it specifies
that the control file includes rules comprising
features (b) (xiv) and (b) (xv), and in that the
expression '"the parsed record"”" in feature (c) has been

replaced with "the parsed, valued data being'".

In fact, instead of features (b) (xiv), (b) (xv) and (c),
the former main request recited that "if the condition
is true, the record is parsed into one or more tokens
and the parsed record is loaded into the database (35)
by the spreadsheet loader (10)".

In order to better understand some of the terminology
used to define the claimed invention, it is useful to

refer to some passages of the description.

According to paragraph [0009] of the application as
published, the "invention may also include a user
interface used to create the control file. The user
interface may include a control file information
section, having an object tree, attributes tab, and
control file preview area, and a data file information

section, having a spreadsheet data area reflecting the

spreadsheet dataset, [sic] Using the user interface,

selecting a business object in the object tree opens a
list of one or more attributes for the business object

in the attributes tab. Attributes from the open 1ist of

attributes may be dragged and dropped into columns 1in

the spreadsheet data area,; and the spreadsheet

dataloader uses the attributes dropped into the




- 10 - T 1723/09

spreadsheet data area to map the columns to the

business objects and to create the control file from

the mapping. The control file may be previewed in a
control file preview area in the user interface.
Attributes in the attribute tab that are mandatory for
the selected business object may distinguished [sic]
from attributes that are not mandatory, such as with a
color, shading, or use of a special font. The
spreadsheet data area of the user interface may include
editing functions. The object tree may display the
business objects using a two-tier hierarchy, with a
list of sub models (being groups of business objects),
and with business objects under each sub model”

(underlining added) .

As specified in paragraph [00030], the spreadsheet
dataset generated as explained above "may be read
in two ways: as a sequence of rows ("row-based data')
or as a sequence of columns ('"column-based data').

Referring to FIG. 8, each entry in the spreadsheet

dataset is called a record 21" (underlining added).

The Examining Division referred to examples 1 and 2 on
pages 8 and 9 of the description, and interpreted the
term "a spreadsheet dataset" in the light of the
description as an input text file which was either

character delimited or fixed length.

Furthermore, in the opinion of the Examining Division,
the wording '"the record is parsed into one or more
tokens and the parsed record is loaded into the
database" meant that input text files were read and a
number of physical records, delimited by the end-of-
the-line signs, were identified. These records were

parsed into a number of strings or numbers, referred to



- 11 - T 1723/09

as tokens in the claim, which were used for populating
the database tables.

5.2 The Examining Division arrived then at the conclusion
that the subject-matter of claim 1 differed from the
disclosure of document D3 only in that data in the
spreadsheet dataset represented a well in an
exploration and production domain. However, the content
of the data stored in the database did not provide per
se any technical effect. Consequently, in the Examining
Division's opinion, the fact that a spreadsheet dataset
contained data representing a well in an exploration
and production domain did not contribute to an

inventive step (Article 56 EPC).

6. In the statement of grounds of appeal, the appellants
did not contest the Examining Division's interpretation
of the claim wording, but essentially argued that
document D3 did not describe at least the combination
of features (b) (xiv) and (b) (xv) recited in claim 1.
These features made it possible to load any text data
whose layout was in spreadsheet format, including row-
based data and column-based data, as respectively shown

in examples 1 and 2 of paragraph [00030].

Interpretation of claim 1

7. Claim 1 relates to an apparatus for loading data, which
represents "a well in the exploration and production
domain", from a spreadsheet dataset into a database. As
to the meaning to be given to the term "spreadsheet
dataset", the Board agrees with the Examining Division
that it can be interpreted as an input text file which

is either character-delimited or fixed length.



- 12 - T 1723/09

An example of a character-delimited dataset read as a
sequence of rows ("row-based'") is given on page 8 of
the application. As explained in paragraph [00030],
data in each row represents "one or more business
objects", i.e. an "entity" such as a well in the
exploration and production domain. Each column
represents an "attribute" used to describe the
"business object", whereby attributes in a row are
separated by special characters. In example 2 relating
to the column-based data given on page 9, data in a
column is said to be a "business object" and typically
to represent "bulk channel data in the exploration and
production domain". In fact, the first column in
example 2 contains depth values and each of the
subsequent columns the values for a particular
parameter measured at the depths specified in the first
column. In other words, each row contains logging
measurements taken at a particular depth. The values of

each column are written in fields with a fixed length.

According to feature (a) (see the Board's itemisation
of claim 1 at point 3.), the claimed apparatus
comprises a "control file" containing a set of rules,
whereby each rule describes how to parse the data and
includes a condition for the rule to be processed, i.e.
for a corresponding data item to be extracted from the

spreadsheet dataset.

Feature (b) identifies the inputs of the spreadsheet
loader, i.e. data representing the well and the control
file, and specifies that each rule in the control file

is evaluated for each record.

An example of a control file comprising a
"parsedescriptor" (feature (b) (xiv)) and a "value

clause" (or "Values clause" - as the terminology is not



- 13 - T 1723/09

consistent throughout the application - cf. feature
(b) (xv)) is given in paragraph [00034] of the
description (cf. <ParseDescriptor> and <Values> in the
control file 30).

As explained by the appellants (statement of grounds of
appeal, page 4, last paragraph and page 5, first
paragraph), the parsedescriptor tells the system how to
read the data "tokens" (i.e. the strings or numbers).
In particular, it specifies the delimiter of each token
or the character position of a token in the data

record.

As to the "value clause", it identifies for a
particular attribute one of the tokens parsed by the

"parsedescriptor" (cf. paragraph [00036]).

In the example given in paragraph [00034], the entity
"XBorehole" is identified by an attribute list
comprising different attributes. One of the attributes
is the "Unique Borehole Identifier" (UBHI). The
corresponding "ParseDescriptor" identifies two values
separated by a delimiter. The "Values clause"
identifies the token at the second position "1" as the
value to be selected by the loader and loaded into the

database.

It is understood that the function of the "Values
clause" depends on the fact that a corresponding
parsedescriptor may extract from a record more than one
string of characters or numbers ("token"), and that one
token in an array of extracted tokens is to be
identified as attribute value for a certain

"object" (cf. paragraph [00036]).



- 14 - T 1723/09

According to claim 1, however, the parsedescriptor may
also parse the physical record by breaking it into a
single token. In this particular case, the value clause
would merely assign the parsed value to a variable or
attribute.

In the Board's opinion, the functionality provided by
features (b) (xiv) and (b) (xv) is linked to the
particular data structure selected for the spreadsheet
and the way the parsedescriptor operates. If the
parsedescriptor extracts not one, but an array of items
or "tokens" from the dataset as a possible "attribute
value" for an "entity", it is necessary to define a
"rule" for identifying and selecting the desired token

in the array of extracted tokens.

As observed in the contested decision (page 4, first
full paragraph), document D3 discloses the use of a
WHEN clause which defines conditions to be fulfilled
before data from the dataset can be loaded (cf.
features b (xiv) and b(xv) of the Board's itemisation of

claim 1 at point 3.).

Case 5 (starting from page 4-18) of document D3
demonstrates, inter alia, the use of Oracles's
SQL*Loader "to break down repeating groups in a flat
file and load the data into normalized tables".
Multiple INTO TABLE clauses are used "to load data into
different tables'", "extract multiple logical records
from a single input record"” and "distinguish different
input record formats" (see D3, page 5-43, "Using
Multiple INTO TABLE Statements"). In particular, a
first INTO TABLE clause identifies the physical records
for the table "emp" by specifying for each of the
corresponding attributes ("empno", "ename", "deptno"

and "mgr") the position of the physical record in the



- 15 - T 1723/09

input datafile. Three similar INTO TABLE clauses
identify the physical records for the table PROJ. As
explained in the "Notes" on page 4-19 of document D3,
the WHEN clause expresses the condition for loading a
row into the table PROJ only if there is a value in a
specified position, whereby the position is expressed
in terms of the columns occupied by the corresponding
data field in the input datafile (i.e. "spreadsheet
dataset").

In other words, the INTO and WHEN clauses described in
document D3 express the condition for parsing the
physical record and for loading data values into the
database. Thus, as far as their functions are
concerned, they correspond to features (b) (xiv) and (b)
(xv) of claim 1 (see the Board's itemisation), in
particular, when the record is broken into a single

token.

The appellants essentially argued that the
parsedescriptor and the value clause specified in
features (b) (xiv) and (b) (xv) of claim 1 could be used
to read row-based data or column-based data as shown in
example 2 of paragraph [00030]. In other words, each
physical record was read using the parsedescriptor.
Then, the value clause identified, among all the parsed
data associated with that record, the data string or
"token" to be loaded into the database.

In the appellants' view, the SQL loader disclosed in
document D3 could only read row-based data since the
records, if they met the WHEN conditional clause, were
directly loaded into the database, and could not be
selectively "put on hold, as in the invention, using

the combination of the parsedescriptor and the values



10.

10.

10.

10.

- 16 - T 1723/09

clause" (statement of grounds of appeal, page 5, last

paragraph) .

As to the latter argument, the Board notes that
according to claim 1 the value clause merely references
which of the tokens parsed is assigned as a value (for
a particular attribute) and that the parsed, valued
data is loaded into the database. No feature of claim 1
can be linked to the function of selectively putting on
hold data records extracted from the spreadsheet
datafile.

As to the alleged limitation of the SQL loader to
reading only row-based data, the Board has difficulty
in following the appellants' argument. The example
given in the application (example 2 on page 9) of
column-based data identifies as a "business object" the
"channel data" in a column, whereas each row identifies

the depth at which "channel data" are collected.

Similarly in the datafile for "Case 5" shown on page
4-19 of document D3, the last three columns containing
data of project 1, project 2 and project 3 can be seen
as a "business object" in the sense of the present
application. As shown on page 4-18 of document D3, the
control file contains instructions to load data into
the table "PROJ" and does so by addressing the first
column and the last three columns of the spreadsheet

file on page 4-19.

According to Case 5 in document D3 (page 4-18), each
physical record (i.e. data value) to be loaded into a
table row is identified by specifying the exact
positions it occupies in the row of a flat file. In the
example given on page 8 of the present application, the

tokens for the same "attribute" (for instance "uwi") do



10.

10.

10.

- 17 - T 1723/09

not occupy the same position in each row because the
first tokens ("well name") in the rows have different
lengths and records are separated by a special
character. The Board accepts that the example shown on
pages 4-18 to 4-23 of document D3 would not be directly
applicable to the case of variable format records

separated by symbols.

However, document D3 deals also with variable-length
data (see for instance page 3-8) and gives an example
of a loader for variable-length data (see "TERMINATED

BY" clause in case 1, page 4-5).

Furthermore, document D3 explains how the position of a
data field is specified using the "POSITION" keyword.
According to page 5-41, the data field in the "logical
record" is defined by the starting and the ending
positions, or by an integer indicating the number of
characters to be skipped from the last data field
before reading the value for the current field. On

page 5-42, the use of "POSITION" with multiple table
loads is further illustrated. Finally, document D3 on
page 5-43 shows how "POSITION" is used to extract

multiple logical records.

In summary, the loader described in document D3 has the
same functionality provided by the parsedescriptor and
the value clause specified in claim 1 of the main
request, whereby the parsedescriptor breaks a physical
record into a number of tokens and the value clause
identifies the token representing the data value to be
loaded into a table of the database.

The Board understands that the approach suggested by
the present application may be particularly suitable

for variable length record formats where the column



- 18 - T 1723/09

position of the physical records in a flat datafile
cannot be directly specified, as for instance in Case 5

of document D3.

However, in the Board's opinion, a person skilled in
the art, faced with the problem of applying the
teaching disclosed in D3 to the kind of spreadsheet
datasets considered in the present application, would
have been aware that physical records of variable
length could be easily broken into an array of tokens
simply by specifying the special characters which
separated them. The skilled person would also have
realised that in this case it was necessary to take
some measures in order to identify a token in an array
of tokens. Consequently, it would have been obvious to
the skilled person to add to the control file of the
loader a rule for defining which value in an array of
parsed values was to be selected for a certain data
field (i.e. "attribute"). In so doing, the skilled
person would have arrived at an apparatus falling
within the terms of claim 1 of the appellants' main

request.
10.7 Hence, the subject-matter of claim 1 according to the
main request lacks an inventive step within the meaning

of Article 56 EPC.

Auxiliary request

11. Claim 1 according to the auxiliary request differs from
claim 1 of the main request in that feature (b) (xiii)

of the latter has been replaced with

(xvi)wherein the control file comprises a

mixture of variable rules and entity rules,



12.

13.

- 19 - T 1723/09

(xvii)wherein said variable and entity rules

each comprise

and in that it further comprises the following

features:

(d) the wvariable rule is used to read a record from an
input text file and stores the parsed, valued data
in a variable to be used later in an entity rule

or 1in a condition of another rule and

(e) the entity rule further comprises an attributelist
with a list of attributes that refer to an object
to be created and are defined on the database into
which the spreadsheet loader will load the parsed

valued data,

(x) wherein the entity rule further describes
how the attributes are set using the parsed,
valued data stored in the variable rule or a

record read from an input text file.

In the statement of grounds of appeal, the appellants
indicated that claim 1 according to the auxiliary
request had been limited with the features of dependent
claim 2 of the main request. According to the
appellants, these features found support in paragraphs
[00032] and [00034] to [00036] of the application.

Features (xvi), (xvii), (d), (e) and (e) (x) correspond
indeed to a large extent to the features recited in
claim 2 of the main request. However, claim 1 of the
auxiliary request further specifies that "said variable
and entity rules each comprise" a parsedescriptor and a
value clause as recited in features (b) (xiv) and (b)

(xv) .



13.

14.

14.

14.

- 20 - T 1723/09

Paragraph [00032] of the application relates to Figure
2, which illustrates the mixing of variable and entity
rules. For more details on these rules, paragraph
[00032] refers to Figures 3 and 4.

According to paragraph [00035], lines 3 to 6 of the
description, the "variable rule" is constructed as a
sequence of a "condition", a "parsedescriptor" and a
"values clause". It may additionally include and
"endcondition" and an "attributelist" (see Figure 3).
The same is specified in claims 3 to 5 of the original
application. Paragraph [00038] is concerned with Figure
5 which shows the loader's components used for

assigning a value to an attribute.

As to the entity rule, it is specified in paragraph
[00032] that it '"describes an entity, an object that is
to be created. The entity rule 120 1lists attributes of
the object and describes how the attributes are set,
using a variable rule 110 or the token, which is read
from the input text file'". Similarly, it is shown in
Figure 4 and explained in paragraph [00037] that an
entity rule comprises a "condition", i.e. the logical
expression that must evaluate to true if the wvariable
or entity is to be processed, an "attributelist", i.e.
a list of attributes which can be assigned values for
the given entity, and optionally an "endcondition" and
a "referenceentity" (Figure 4). This corresponds to

claims 6 to 9 of the application as filed.

As shown in Figure 4, the entity rule 120 comprises an
attributelist and the value of an attribute is
determined by the parsedescriptor and a value rule (see
Figure 5). Thus, it could be argued that, wvia the
attributelist, also the entity rule comprises a

parsedescriptor and a value clause. In this case, a



14.

14.

- 21 - T 1723/09

value clause related to the entity rule would be used

to assign a value to an attribute of the entity.

On the other hand, claim 1 states explicitly that,
apart from a list of attributes, the entity rule
comprises a parsedescriptor and a value clause which
are apparently distinct from the parsedescriptor and
value clause used to assign a value to an attribute. In
other words, the apparatus according to claim 1 appears
to comprise value clauses for assigning a "value" to an
entity and additionally value clauses for assigning

values to the attributes of the entity.

However, it is clear from the whole disclosure that
entities (such as "well" or "borehole") are objects to
be created in the relational database, whereas

attributes are "aspects" of business objects expressed

in terms of values read from the text file (see for
instance paragraphs [00037] and [00038]). For instance,
in the example 1 on page 11 of the description, the
entity rule for the entity "XWell" comprises a
"Condition", an "EndCondition" and an "AttributeList"
with a corresponding variable rule which attributes,
inter alia, the name to the "XWell". In other words, in
the application as filed, a parsedescriptor and a value

clause are always part of a variable rule.

As the combination of features recited in claim 1 of
the auxiliary request does not find support in the
original application and the evident inconsistencies
between the claim and the disclosure cannot be easily
overcome by interpreting the claim wording, it must be
concluded that claim 1 according to the auxiliary
request comprises subject-matter extending beyond the
content of the application as filed and thus violates
Article 123 (2) EPC.



T 1723/09

the Board comes to the conclusion that none
the

15. In summary,
of the appellant's requests is allowable. Thus,

appeal has to be dismissed.

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

werdekg
OV aisch m
S pdischen p,, 7))
Q" ® e, /Q,
D & /"e/%/a

S

oo™

(ecours
des brevetg
[/E'a”lung aui®
Spieo@ ¥

(4]

)
© % ¥ %
&0, % A
®,%s, oV &
o (Z’J/g,, op as\»g,aQ

eyy + \

I. Aperribay R. Moufang

Decision electronically authenticated



